LETTERS TO THE EDITOR

The Art and Science of Transmyocardial Laser Revascularization

If Jackson Pollack is the artist, then the recent study in JACC by Saririan and Eisenberg on myocardial laser revascularization is indeed state of the art. The investigators (1) are to be commended for attempting to clarify the work that has been done with this technique, but unfortunately the result is less than satisfactory. To equate Ho:YAG and CO₂ lasers as well as transmyocardial laser revascularization (TMR) and percutaneous myocardial laser revascularization (PMR) without understanding that vast differences exist in the laser-tissue interactions and in their ability to treat the full thickness of the myocardium is analogous to saying that calcium channel blockers and beta-blockers are of equal importance postmyocardial infarction because they are both “blockers.” This lack of discernment is most obvious in the researchers’ discussion of suggested mechanisms of action.

Throughout the discussion, the investigators list a number of different experiments without identifying what type of laser was used, what type of model was employed, and whether the model employed re-creates the clinical scenario. In addition, they ignore several studies that do clarify the mechanism. These omissions continue when describing the clinical work. Where significant differences exist in the clinical trials, the results are lumped together. In an attempt to tabulate the published series of TMR patients with 12-month follow-up, the researchers ignored over 220 patients who demonstrated a significant perfusion benefit after CO₂ TMR. The investigators are familiar with these studies, as they do reference them elsewhere in their report. This perfusion benefit has also been demonstrated using the same CO₂ laser in a randomized clinical trial. Although this is acknowledged by the investigators, it is immediately discounted and considered to be a placebo effect. They claim that a placebo effect can demonstrate an 80% improvement in exertional angina, but this has not been demonstrated at one year, and certainly it has not been demonstrated out beyond five years, as has been reported with CO₂ TMR.

Moreover, they do not explain how perfusion benefit can be achieved by placebo. They claim that the patients who crossed over from medical therapy to TMR in the aforementioned CO₂ TMR trial did so owing to a subjective end point of angina and as a result of investigator bias. In fact, crossovers occurred after patients developed unstable angina and were unweanable from intravenous heparin and nitroglycerin after three attempts to decrease this maximal medical therapy. This treatment was not controlled by the investigators and is far from subjective.

Also, comments on the perfusion data from the European CO₂ TMR trial are misleading. Although it is true that a decrease occurred in the number of myocardial segments with reversible ischemia for patients treated with medical therapy and for TMR, the decrease in the medical management group was due in part to a doubling of the fixed defects. No significant increase occurred in the fixed defects in the TMR group.

To include PMR in this discussion without noting its severe limitations is inappropriate; for example, regardless of the mechanism, a 3- to 4-mm divot created on the subendocardium cannot be considered to be as complete a treatment as a full thickness transmural channel. I do agree with the investigators that a review of the TMR literature suggests that the clinical benefits of PMR are largely due to the placebo effect. Apparently the U.S. Food and Drug Administration (FDA) agrees because the FDA recently deemed Ho:YAG PMR not to be worthy of approval.

Keith A. Horvath, MD
Northwestern University Medical School
Cardiothoracic Surgery
201 E. Huron St., Galter Ste 10-105
Chicago, Illinois 60611-2957
E-mail: khorvath@nmh.org

doi:10.1016/S7035-1097(03)00495-9

REFERENCE

REPLY

We would like to thank Dr. Horvath for his insightful comments. The goal of our paper was to present an unbiased review of the topic of myocardial laser revascularization with an emphasis on randomized, controlled clinical trials. Given the word limitations imposed on our manuscript, it would have been inappropriate for us to delve into laser-tissue interactions at the expense of important clinical data. Moreover, an appropriate reference on laser-tissue interactions was made available to the reader.

At no point in our paper did we “equate” transmyocardial revascularization (TMR) and percutaneous myocardial laser revascularization (PMR). These are distinctly separate techniques. Neither do we suggest that the CO₂ and Ho:YAG lasers are of equal value. Any claim, however, that the CO₂ laser is superior to the Ho:YAG laser is speculative, and remains to be shown in a head-to-head randomized clinical trial.

The experimental studies quoted in our paper used animal models of chronic myocardial ischemia, akin to patients with chronic angina. We found no study that entirely explains the mechanism of action of TMR. There are several studies for and against each hypothesis; therein lies the controversy.

We presented the trials in tabular form to emphasize their similarities. Differences were noted in the text. As Dr. Horvath points out, a number of small, nonrandomized studies with short-term follow-up demonstrate enhanced perfusion post-TMR. This could either be related to laser-induced angiogenesis, or to the natural development of collateral vessels in patients with chronic ischemia. The latter explanation emphasizes the danger of relying on the results of uncontrolled studies because, for the most part, enhanced perfusion has not been confirmed in randomized clinical trials. Transmyocardial laser revascularization did not improve myocardial perfusion in five of five trials in which perfusion was assessed before and at various times after enrollment. In the trial by Frazier et al. (1), in which a benefit was seen, there was only a 49% follow-up in the medical arm of the study. Also, the degree of symptomatic improvement was vastly disproportionate to the degree of improvement in perfusion.

In the trial by Frazier et al. (1), 59% of patients initially assigned to maximal medical therapy crossed over to the TMR group. The investigators allowed crossover as an enticement for patients to
remain in the study if medical therapy failed and the end point of
angina was reached. Angina, unfortunately, is a subjective measure.
Irrespective of how “objective” the investigators were in determining
the success or failure of antianginal therapy, the use of a
subjective end point may have inadvertently introduced bias into
the trial. It is difficult to draw proper conclusions from such a trial
when large crossover rates are allowed.

With respect to the European trial by Schoefeld et al. (2), the
number of sites with irreversible segments was adjusted for
baseline, and for repeated within-patient, between-site measures.
Therefore, to suggest that a “doubling” of fixed defects in the
medical therapy group implies enhanced perfusion in the TMR
group is inappropriate, especially because a subgroup analysis of
the same TMR patients showed no improvement in myocardial
perfusion with PET scanning (3).

To conclude, we believe that the reported benefits of TMR,
even out to five years, may be related to the placebo effect. It is the
most plausible mechanism of action, given the lack of concrete
evidence to the contrary. A properly powered, blinded, sham-
controlled surgical trial of TMR could certainly settle this issue.
In the absence of such a trial, however, more studies using new
perfusion imaging modalities must be conducted to elucidate the
true value of this technique.

REFERENCES

1. Frazier OH, March RJ, Horvath KA. Transmyocardial revasculariza-
tion with carbon dioxide laser in patients with end-stage coronary artery
revascularization in patients with refractory angina: a randomised
blood flow with positron emission tomography before and after

Mitochondrial Dysfunction in Heart Failure

I read with interest the report in the Journal by Scheubel et al. (1).
Although their conclusion that a deficit in the activity of respira-
tory chain complex I may not be due to generalized damage of
mitochondrial deoxyribonucleic acid (DNA) and gene expression
is most likely true, their statement in the discussion that “in an
experimental model of tachypacing-induced heart failure without
any drug treatment, a depression in the activities of all complexes
containing mitochondrially encoded subunits, including the mito-
ochondrial adenosine triphosphatase, was described . . . , indicating
disturbed mitochondrial gene expression,” is inaccurate.

Marin-Garcia et al. (2) in their study of mitochondrial function
in pacing-induced cardiac failure reported that the activity levels
of complexes I and IV (complexes containing mitochondrially en-
coded subunits) were unchanged (normal) relative to controls.
Only one complex of the electron transport chain (complex III)
and adenosine triphosphate synthase (complex V) were affected
without changes in peptide content of specific mitochondrial
proteins. The reduced levels of complex III and complex V
activities did not appear to be due to generalized mitochondrial
damage, necrosis, or overall decreased levels of mitochondria as
gauged by unchanged levels of respiratory complex I, complex II
(nuclear encoded), complex IV, and citrate synthase (also nuclear
encoded). The levels of mitochondrial DNA deletions (7.4 kb)
were extremely low in comparison to wild-type genomes and
probably of no significance. Therefore, the investigators’ conclu-
sion that depression in the activity levels of the respiratory enzymes
and complex V in the pacing-induced cardiac failure indicate
disturbed mitochondrial gene expression is misguided. However, I
do agree that the protective role of drug treatment against
mitochondrial DNA damage remains to be proven.

Jose Marin-Garcia, MD
The Molecular Cardiology and Neuromuscular Institute
75 Raritan Avenue
Highland Park, New Jersey 08904
E-mail: tmc1c@att.net
doi:10.1016/S7035-1097(03)00494-1

REPLY

We thank Dr. Marin-Garcia for the interest in our study (1). He
is right in stating that our citation of his study (2) “indicating
disturbed mitochondrial gene expression” is inaccurate. We regret
such inaccuracies, which must have occurred during several refor-
mulations of our text. The reasons for the reduced activities in
complex III and complex V in his tachypacing-induced failure
model (2) remain undetermined at present. However, we are happy
that Dr. Marin-Garcia agrees to our conclusion that a depressed
complex I activity in failing human myocardium may not be due to
generalized damage of mitochondrial deoxyribonucleic acid.

Robert J. Scheubel, MD
Department of Cardiothoracic Surgery
Martin-Luther-University Halle-Wittenberg
Ernst-Grube-Str. 40
D-06097 Halle (Saale), Germany
E-mail: robert.scheubel@medizin.uni-halle.de
doi:10.1016/S7035-1097(03)00488-1

REFERENCES

respiratory chain complex I in human failing myocardium is not due to
disturbed mitochondrial gene expression. J Am Coll Cardiol 2002;40:
2174–81.
2. Marin-Garcia J, Goldenthal MJ, Moe GW. Abnormal cardiac and
skeletal muscle mitochondrial function in pacing-induced cardiac fail-