Preclinical Restenosis Models and Drug-Eluting Stents
Still Important, Still Much to Learn
Robert S. Schwartz, MD, FACC,*† Nicolas A. Chronos, MBBS,‡ Renu Virmani, MD§
Minneapolis, Minnesota; Atlanta, Georgia; and Bethesda, Maryland

Percutaneous coronary intervention continues to revolutionize the treatment of coronary atherosclerosis. Restenosis remains a significant problem but may at last be yielding to technologic advances. The examination of neointimal hyperplasia in injured animal artery models has helped in our understanding of angioplasty and stenting mechanisms, and as drug-eluting stent (DES) technologies have arrived, they too have been advanced through the study of animal models. These models are useful for predicting adverse clinical outcomes in patients with DESs because suboptimal animal model studies typically lead to problematic human trials. Similarly, stent thrombosis in animal models suggests stent thrombogenicity in human patients. Equivocal animal model results at six or nine months occasionally have been mirrored by excellent clinical outcomes in patients. The causes of such disparities are unclear but may result from differing methods, including less injury severity than originally described in the models. Ongoing research into animal models will reconcile apparent differences with clinical trials and advance our understanding of how to apply animal models to clinical stenting in the era of DESs. (J Am Coll Cardiol 2004;44:1373–85) © 2004 by the American College of Cardiology Foundation

Percutaneous coronary intervention continues to revolutionize atherosclerosis treatments. The understanding of angioplasty mechanisms came after these technologies were already in clinical use through the comparison animal model research with clinical pathologic specimens. An early understanding of balloon angioplasty suggested that atherosclerotic plaque was "compressed" or "stretched"—concepts that eventually yielded to a comprehensive understanding that both plaque and normal artery are severely fractured in many successful cases (good clinical percutaneous transluminal coronary angioplasty or stent result). Animal models assumed a central position in understanding coronary artery injury and healing. Neointimal formation results from vessel laceration, which is a response to injury during revascularization. Rare but valuable human necropsy material has confirmed animal model results showing that plaque that was fractured or lacerated by coronary angioplasty induced severe arterial injury and that restenosis resulted from this injury (1,2).

Much of what is known about restenosis and neointimal formation comes from intense study of animal injury models and comparison with human material, which usually is derived from autopsy. What is referred to as "restenosis" in normal animal arteries is not truly such; rather, it is neointima resulting from controlled injury that is induced in normal vessels. Stenosis in these models results from thick and sometimes occlusive neointima forming after severe balloon or stent injury and also from vessel shrinkage (remodeling) due to scar formation. As injured normal animal arteries (rat, pig, mouse, dog, rabbit, primate) became the standard for understanding neointima and remodeling, they rapidly evolved into a new role, that of testing novel restenosis therapies (3,4). Many parallels emerged between human restenosis and its animal model counterparts. Each has strongly impacted our understanding of restenosis and its treatment.

ANIMAL RESTENOSIS MODELS: A BRIEF OVERVIEW

Rat carotid artery model. The rat carotid artery model was developed in the 1960s, and from it derived the foundations of vascular biology. Although first used to gain insight into human atherosclerosis, it was adapted to understand restenosis and to test restenosis therapy. This model became a standard for studying smooth muscle cell proliferation after endothelial denudation (5–11). One advantage of the model is that it provides one with the ability to study molecular biology (11–14).

This model assumed less importance after several early studies of angiotensin-converting enzyme inhibitors. These agents were very effective at inhibiting neointimal thickening, suggesting the importance of angiotensin II to neointimal growth (15,16). However, two subsequent clinical studies failed to show inhibitory effects (17–19). Angiotensin II has been the subject of ongoing interest (20–22), however, the failure of this model to predict negative clinical trial results has caused it to lose favor among investigators.
Mouse arterial injury model. The mouse arterial injury as a restenosis model developed from the availability of the mouse genome and molecular methods to study events after arterial injury (23,24). The mouse has very small vessels; therefore, traditional injury methods by balloon or stent are not practical. Injury may instead be performed by rotating a small guidewire in the vessel (25–28) or electrical injury. Either of these methods causes endothelial loss and focal medial cell damage of 25% to 50%. The internal elastic lamina often is disrupted by these injury procedures. Variable neointimal thickening forms focally at injury sites in proportion to the amount of injury, and little thrombus occurs in this model.

Wound healing in the mouse model partially replicates other models because its features include mural thrombus resorption through inflammatory cell infiltration. A thin neointima (roughly 0.03 mm²) forms by three weeks. Because most or all arterial cells (in media and adventitia) are killed uniformly, these lesions heal from the borders. The power of molecular biology and genetics in these mouse models will permit substantial advances in understanding the interactions among cell proliferation, cell migration, thrombus formation, and remodeling.

Hypercholesterolemic rabbit iliac model. The rabbit iliac restenosis model also has been studied extensively to test restenosis therapies and to understand cellular and molecular mechanisms (29–31). Blood cholesterol levels are typically >1,000 mg/dl and cause biochemical arterial injury, which is supplemented by mechanical injury.

These models add initial injury by air desiccation to hypercholesterolemic diets and finally balloon inflation to further injure the vessel. Unlike rat carotid arteries, macroscopic and hemodynamically significant stenoses similar to human restenosis develop reliably in the rabbit models. Histopathology in this model shows foam cells (macrophages that have ingested excessive lipid) and voluminous extracellular matrix. One criticism of this model is that foam cells are rare in human restenotic neointima. However, balloon angioplasty in this model does cause histopathologic injury comparable with that of human angioplasty, with medial dissection and plaque fracture.

Platelet deposition occurs rapidly at sites of a balloon-induced plaque fracture. Thus, antiplatelet agents were studied early in the history of this model as a potential therapy (32,33) and showed efficacy in reducing neointimal thickness. A wide variety of other agents have been studied in this model and are discussed later.

Porcine coronary injury model. The coronary arteries of domestic crossbred pigs respond similar to human coronary arteries after injury (34–36). A hypercholesterolemic diet produces lesions more severe in nature than standard laboratory diets (37,38). In this model, injury causes thick neointima within 28 days. The neointima is identical to human restenotic neointima. When a balloon-only injury is performed, a typical medial laceration occurs and is filled at 28 days by neointima. The amount of neointimal thickening is directly proportional to injury. This permits the creation of an injury-response regression relationship that quantitates the response to potential therapies (39–41).

Relevance to human coronary intervention. The porcine coronary models using injuries caused by either stenting or overstretching injury alone are now accepted standards by which potential restenosis therapies are studied, in large part because the stages of neointimal growth described in the porcine model follow those now known in humans. Empiric correlation with clinical trials suggests this may be true. Negative trials using the porcine model correspond well to negative clinical trials, suggesting that this model has good specificity. Fewer therapies have had positive results and, therefore, model sensitivity is less certain. Paclitaxel- and rapamycin-eluting stent studies suggest that positive results in these models are predictive of positive results in clinical trials. Interestingly, ionizing radiation to the coronary arteries in the pig model demonstrated neointimal stimulation rather than inhibition when gamma radiation was delivered externally (42). However, many studies of intravascular gamma and beta radiation show neointimal inhibition in pigs when examined at 28 days after therapy. Longer-term data are less conclusive and suggest little efficacy at longer time points.

Human coronary arteries develop radiation-induced coronary artery disease, although this is achieved typically with high doses of radiation that are given for many years. Several clinical studies in patients receiving vascular brachytherapy for in-stent restenosis show neointimal stimulation at the edges of radiated regions, where radiation doses are falling off. Moreover, several reports are emerging that suggest a “catch-up” phenomenon in patients receiving vascular brachytherapy. Six-month data in pigs showing lack of efficacy might have predicted this clinical finding; further long-term patient analysis is underway to determine potential relationships to the pig model. Continued observation over time will determine whether intravascular brachytherapy will stimulate accelerated coronary artery disease in patients.

Sensitivity for efficacy will be better assessed as additional strategies that are efficacious are developed. The data suggest that the porcine model is best for establishing safety, although efficacy remains less certain as discussed in detail below. Table 1 compares several human trials with preclinical results. This table includes references for brachytherapy (43–62), statins (63–67), angiotensin-converting enzyme inhibitors (18,19,21,68–72), anticoagulants (39,73–87),...
probucol (88–97), rapamycin (98–105), paclitaxel (106–115), calcium channel blockade (116–119), antisense (120–123), dexamethasone (124–128), and heparin (74,80,81,129–133).

THE PROPORTIONALITY BETWEEN INJURY AND NEOINTIMAL THICKENING

Fundamentally, mature neointima is a repaired artery and thus is desirable. Problems arise in only a minority of cases when exuberant neointima impinges on luminal blood flow. Early studies in the porcine coronary artery injury model suggested that deeper arterial injury results in greater neointimal thickening (35). This proportionality in the pig model was subsequently sought and validated in patients (Fig. 1). A practical outcome of this phenomenon was improved stent design, which sought to induce less arterial injury (134,135). Early wire stents could cause substantial injury if they were overexpanded; slotted tubular designs created fewer injuries and have prevailed in modern stent designs (36). Other stent concepts have attempted to limit injury even more but have been less successful, likely because a 90% stenosis when properly dilated undergoes 10-fold expansion. This expansion induces significant, unavoidable arterial injury by necessity and occurs both with angioplasty alone and with stenting. Drug-eluting stents (DESs) also induce such injury but rely on local drug effects to moderate the neointimal response.

Overstretch injury to pig coronary arteries holds important lessons for neointimal response to injury. Simple overstretch without stent implant usually causes medial fracture and laceration, with frequent dissections. A typical balloon:artery ratio is 1.2:1 or 1.3:1, which is visually estimated by the operator. These ratios generally create enough injury for satisfactory neointimal thickness without the risk of large dissections. Larger balloon:artery ratios yield a high likelihood of severe dissection with resulting thrombosis, coronary occlusion, and ensuing death from myocardial infarction and ventricular fibrillation. These balloon:artery ratios are finding use in DES efficacy studies.

When stents are implanted, dissections usually are controlled except at the stent margins. However, stent:artery

Figure 1. Stent-induced arterial injury in patients generates a proportional neointimal response. Panels from left to right indicate that as the internal elastic lamina becomes more severely disrupted by the stent and as the proportion of medial fracture transitions from <30% to >30% (middle and right columns), neointimal growth becomes progressively more severe.

<table>
<thead>
<tr>
<th>Table 1. Comparison Between Clinical Trials and Porcine Preclinical Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcine Model</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Brachytherapy</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Statins</td>
</tr>
<tr>
<td>Angiotensin-converting</td>
</tr>
<tr>
<td>enzyme inhibitors</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
</tr>
<tr>
<td>c-myc antisense</td>
</tr>
<tr>
<td>Dexamethasone</td>
</tr>
<tr>
<td>Heparin</td>
</tr>
</tbody>
</table>

Data in parentheses are reference numbers.
ratios of >1.3:1 often cause chronic vessel injury as the stent struts migrate through the vessel wall, including through the external elastic lamina and adventitia. Marked inflammation accompanies the stent struts when such oversizing is performed. This inflammation is highly undesirable because drug elution cannot overcome such severe and chronic injury, making stent/drug efficacy assessment not possible. It is for this reason that in preclinical DES testing, a more common practice is to use the balloon:artery ratio of 1.1:1, with the resulting data applied to safety analysis but not efficacy because neointimal generation at these low injury levels is minimal to mild. The relation of safety and efficacy studies with stented and overstretching alone remains to be determined.

Figure 2. Diagram illustrating the time course of events leading to neointimal hyperplasia in atherosclerotic human coronary arteries. In the first stage, the atherosclerotic artery is depicted before stent placement. NC = non-cellular region of the plaque. Within the first three days after stent placement, platelets/fibrin and neutrophils accumulate at the stent site. At 14 to 30 days, chronic inflammation develops (macrophages, lymphocytes) and persistent fibrin is visible. Smooth muscle cells also are beginning to appear within the stent. At three months, chronic inflammation remains, and fibrin frequently persists. Proteoglycan and matrix deposition occurs. At 6 to 12 months, there often is persistent, chronic inflammation close to the struts, and endothelialization generally is complete. A neointima rich in smooth muscle cells, with a proteoglycan and collagen matrix, has developed. Adapted from Virmani et al. (136).

Thrombus and restenosis. Mural thrombus in porcine models is an early response to balloon dilation and stenting. It occurs less often in injured rat and dog arteries (138). A direct relationship between thrombus volume and neointimal volume is unproven but is thought likely.

Fibrin- and platelet-rich thrombus form on stent struts in porcine arteries within hours of implantation. It progressively resolves during the course of weeks, principally through resorption by macrophages (139). Thrombus resolution and healing in porcine arteries closely reflect the healing in humans after stent implant. Near-total fibrin and thrombus resorption is a feature of complete arterial healing. Proven restenosis therapies such as vascular brachytherapy and DESs impede healing, and treated arteries often show unresolved fibrin thrombus (microscopic or sometimes gross) at times much later than found in untreated arteries.

Inflammation. Thrombus resolves by inflammatory cells (2,140,141). Macrophages secrete a variety of thrombolytic enzymes that digest thrombus as the macrophage tunnels into thrombus surrounding stent strut sites. Inflammation also may occur without thrombus, stimulated by local cytokines. Platelets and their contents appear in thrombus after degranulation and provide major chemokines for inflammation. These include P-selectin and integrins such as beta2 integrin Mac-1 (CD11b/CD18) (142). This integrin, located on the monocyte cell surface, is important because it is prominent in adhesion. Heterotopic platelet aggregation, a process where platelets aggregate on the monocyte surface and stimulate additional platelet activation, also plays an important role. The chemokines also are key for inflammation at vascular injury sites. Monocyte chemoattractant protein-1 attracts monocytes and activated T cells to vessel injury sites.
Inflammation is a potent and direct stimulus for neointimal thickening, in part through stimulating cell proliferation (143). Several animal models exhibit inflammation (monocytes/macrophages, lymphocytes, neutrophils) from stent coatings and drug-releasing polymers. These models suggest that biomedical polymers in DES applications cause inflammation to variable degree in proportion to the polymer mass on the stent. A major challenge in DES technology has been to find polymers that can control drug elution over the course of time yet incite minimal inflammation. Minor inflammation is presently acceptable, as evidenced in guidelines for testing DESs. The “perfect” polymer remains unknown, and all polymers in use today induce some degree of inflammation. It is for this reason that DESs tested in animal models should include quantitative inflammation measurements. A commonly used quantitative assessment of inflammation method is by Kornowski et al. (143).

Cell migration and proliferation. Cell migration and proliferation remain ill-defined in both animal models and in human neointimal hyperplasia. Although cell proliferation is implicated universally in neointimal hyperplasia, its quantitative role remains unclear. Early controversies about the role played by proliferation remain unresolved (144,145).

Both ionizing radiation and drugs effective against restenosis inhibit cell proliferation but have many additional cellular effects, including inhibiting migration, cell signaling, activation, and secretion, and may impair other important reparative features such as angiogenesis (146). These strategies are effective against neointima in multiple animal studies (147,148).

Therapies that are more specifically targeted at proliferation show less clear results. Gene therapy has been used in this strategy, for example, to express cell-cycle inhibitors (p21, p27, p53, and Rb) (149–151) or by halting cell cycle progression by inhibiting CDK2, cdc2, E2F, PCNA, myc, and myb (152–157). These gene-based strategies are marginally successful in animal models and have not been tested in clinical studies. Current DES success using rapamycin and paclitaxel rely on a multitude of cellular targets in addition to proliferation (158,159). The relative contribution of alternative effects is unknown but under investigation.

TIME COURSE OF CORONARY ARTERY HEALING AFTER STENTING

Coronary artery healing after stenting is reported for both the porcine model and in patients. Table 2 summarizes this information. Stent healing in pigs compared with patients suggests a time comparability of approximately 1:6 porcine: human, with pigs healing more rapidly. Reasons for the more rapid process in pigs are unclear but may include the young age of pigs, normal arteries compared with diseased human vessels, and other, as-yet-undetermined factors.

In the porcine model, coronary arteries typically are studied at 1, 3, 6, and 12 months. Although these times are now standard, the reasons for time points after one month principally relate to safety because few changes occur in the pig model beyond this time, with the exception that neointima thins slightly later in the course of time. An unproven concept is that safety requires longer follow-up in pigs (presuming good results at one month) and that this theory might translate to long-term patient safety. The key to a safety evaluation in pigs is complete arterial healing, with thrombus resorption, minimal residual inflammation, and complete or near-complete endothelialization.

ANGIOGENESIS

Animal models exhibit angiogenesis at arterial lesion locations (Fig. 3). Marked disorganized angiogenesis occurs at stented sites in normal, non-diseased arteries for ill-defined reasons. Vascular hypoxia may be one cause and may result from the compression of adventitial vasa vasorum. Several angiogenic cytokines are upregulated in hypoxia, the most well known being hypoxia-inducible factor-1 alpha. Human atherosclerotic lesions are similarly angiogenic, especially in chronic total occlusions (146,160).

Table 2. Time Course Comparison of Events in Porcine and Human Coronary Stenting

<table>
<thead>
<tr>
<th>Event</th>
<th>Porcine Coronary Model</th>
<th>Human Stent Implantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombus</td>
<td>0–14 days</td>
<td>0–30 days</td>
</tr>
<tr>
<td>Inflammation</td>
<td>1–14 days</td>
<td>0–30 days</td>
</tr>
<tr>
<td>Endothelialization and</td>
<td>4–16 days</td>
<td>14–90 days</td>
</tr>
<tr>
<td>granulation tissue formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth muscle cells and matrix formation</td>
<td>14–28 days</td>
<td>2–6 months</td>
</tr>
</tbody>
</table>

Figure 3. Microscopic computed tomography examination of normal (left) and stented (middle and right) porcine coronary arteries. Massive angiogenesis results in a highly vascular but disorganized array of vessels after the stenting of a normal porcine coronary artery. (Image courtesy Dr. Hyuck Moon Kwon.)
LESSONS FROM ANIMAL MODELS: SYSTEMIC RESTENOSIS THERAPIES

Most systemic restenosis treatments have failed and the literature contains many review articles on this topic (161–163). The Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial, which tested oral tranilast to limit restenosis, is the most recent. Several animal studies showed neointimal hyperplasia was reduced in drug-treated animals and suggested oral tranilast efficacy. In one study, rabbits fed cholesterol showed inhibition of neointimal area by tranilast (300 mg/kg) (164). Another study in overstretched porcine coronary arteries showed a 37% reduction in neointimal area normalized to fracture length (147). These and several other preclinical studies preceded the PRESTO trial (147,164–166).

Early small clinical trials showed tranilast could inhibit restenosis, prompting the large, randomized double-blind PRESTO trial of 11,484 patients (167). Primary end points were death, myocardial infarction, and ischemia-driven target vessel revascularization at nine months. Results showed a 15.8% event rate for placebo and 15.5% for tranilast (p = NS). The quantitative coronary angiography substudy comprised 2,018 patients and found that follow-up minimum lumen diameter (MLD) was 1.76 ± 0.77 mm in the placebo group compared with 1.78 ± 0.76 mm (p = NS).

Intravascular ultrasonography showed no difference in plaque volume across tranilast doses. Thus, the PRESTO trial was analogous to events 10 years earlier in the Multicenter European Research Trial with Cilazapril after Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MERCATOR) and Multicenter American Research Trial with Cilazapril After Angioplasty to Prevent Coronary Obstruction and Restenosis (MARCATOR) trials (68). Each of these clinical trials was based on early preclinical data that were reported to show efficacy of the drug in question. Subsequent large, randomized clinical trials failed to show any efficacy.

The literature has many reports of preclinical systemic therapies that suggest efficacy of various pharmacologic agents. However, before beginning clinical trials, several important questions must be evaluated. Preclinical studies must use comparable drug doses and obtain comparable drug levels to those planned for clinical trials. Preclinical studies should use the same end points as used in clinical trials, which should include angiographic percent stenosis, absolute lumen MLD, late loss, or intravascular ultrasonography (IVUS)-based, lumen or neointimal parameters (3,145,168,169).

An important reason for false-positive preclinical results may arise from histopathologic measurements differing from clinical indices. Such preclinical histopathologic measurements not available or not used in clinical trials include the intima:media ratio, percent neointimal reduction, or microscopic (but statistically significant) neointimal area inhibition. Animal model efficacy reports may yield different conclusions if angiographic or IVUS parameters were standard. The best animal model metric to correlate with clinical data is an area of active investigation.

LESSONS FROM RESTENOSIS MODELS

Safety. Animal models play an instrumental role in developing and improving DES technology, a role that continues to evolve. Safety is the principal concern for any stent technology, and animal models appear useful in its assessment. The critical failure mode for stents is acute, subacute, or late closure because stent thrombosis nearly always has catastrophic implications. The porcine coronary stent model appears predictive for stent thrombosis. Several early studies of brachytherapy in pigs suggested that stent thrombosis might be a problem. Kaluza and Raizner (170) performed balloon and stent injury in healthy porcine coronary arteries, followed by intracoronary beta radiation. Five of 10 pigs given radiation died (50%) of stent thrombosis, whereas none died in the control (non-radiated) group. Stent thrombosis in the porcine coronary model is distinctly unusual, and subsequent patient studies of gamma brachytherapy showed subacute thromboses of up to 14% before the understanding that new stents should not be placed at brachytherapy sites (171–174). The relationship of porcine neointima after brachytherapy to comparable human studies is unclear. Several models show stimulation of neointimal hyperplasia by radiation, whereas clinical studies to date show no evidence of similar problems, at least in the near term.

Neointimal stimulation, rather than its suppression, is a second concern for stent safety, especially with DESs. Toxicity induced by high local drug concentration remains an ongoing concern and can show significant arterial changes. Although rabbit iliac arteries implanted with actinomycin-D showed good results (Fig. 4), the porcine coronary model appears to have predicted enhanced neointima in patients receiving actinomycin-D releasing stents by showing poor healing and neointimal stimulation (Fig. 5). These model studies showed incomplete stent healing, microthrombus, incomplete endothelialization, and late medial necrosis with marked neointimal thickening. The Actinomycin Eluting Stent Improves Outcomes by Reducing Neointimal Hyperplasia (ACTION) trial tested actinomycin-D elution in a randomized study. The trial was halted after 90 of 360 planned patients were enrolled and restenosis rates reached 28% in the highest dose group, suggesting neointimal stimulation (data shown at ESC 2002, Berlin, Germany). High restenosis rates also occurred in lower-dose groups; 25% and 17% for 2.5 μg and 10 μg actinomycin-D, respectively, versus 11% in controls.

Similarly predictive results from animal models were found using very high-dose taxane released from a subpolymer, where the porcine model (Fig. 6) predicted worse clinical restenosis at 12 months. The Study to COMPare REStenosis rate between QueST and QuaDS-QP2 (SCORE) trial was stopped after enrolling 266 of 400 population.
planned patients because of late events and increased 12-month restenosis rates (175).

These combined data suggest the porcine model can determine stent safety from both thrombosis and neointimal stimulation perspectives. Increased stent thrombosis in porcine coronary arteries should warn investigators about increased clinical thrombosis risk. Adverse vascular pathologies showing poor healing, vessel toxicity (for example, medial necrosis or cell death), absent endothelialization, or neointimal stimulation should be of major concern.

DES efficacy. The accuracy of efficacy assessment for DESs in preclinical testing remains less clear than their safety. Because restenosis in the stent era is virtually all neointimal thickening, limiting neointima should translate directly from animal models to patients. Unfortunately, this

Figure 4. Actinomycin-D studies in rabbit iliac arteries. These images show excellent neointimal inhibition at 8 μg and 25 μg doses (middle and right columns), respectively, compared with control (left column). Lower rows are higher power views, showing that the 25-μg dose appears cytotoxic with poor healing present.

Figure 5. Porcine coronary arteries at 28 days (top) and 90 days (bottom) after actinomycin-D eluting stent placement. The 28-day data show substantial residual fibrin, inadequate vascular healing, but little mature neointima. At 90 days, there is a marked increase in neointimal thickening, greater than control, which occurred over time. The graph at lower right shows neointimal thickness measures for 90-day control and 10-μg datasets. The ACTION trial of actinomycin-D elution was stopped prematurely because of elevated major adverse clinical event rates due in part to abnormally high late loss.
translational may not be as direct as desired, and the quantitative relationship between neointima in the porcine model and in patients remains poorly defined.

At least two DESs (rapamycin and paclitaxel) show convincing restenosis efficacy in patients. Both use a compatible polymer for controlled drug release. Suzuki et al. (100) examined rapamycin-eluting stents and compared them with bare stents, dexamethasone-eluting, and both rapamycin-eluting and dexamethasone-eluting devices. The rapamycin-eluting stents reduced in-stent neointimal hyperplasia at 28 days with a mean neointimal area of 2.47 mm² (rapamycin alone), 2.42 mm² (rapamycin and dexamethasone), 5.06 mm² (bare stent), and 4.31 mm² (dexamethasone alone). Gallo et al. (150) examined intramuscular rapamycin given to pigs for 14 days after balloon-induced injury. The animals were studied 28 days after percutaneous transluminal coronary angioplasty and showed coronary stenoses of 63% and 36%, respectively (lumen area 1.74 mm² vs. 3.3 mm²; control vs. rapamycin). These two preclinical studies suggest that rapamycin has efficacy against neointimal formation in the porcine artery injury model, a suggestion that was confirmed by clinical trials.

Drachman et al. (176) compared paclitaxel-eluting stents with controls in rabbit iliac arteries after balloon denudation. These investigators found that paclitaxel-eluting stents markedly inhibited neointimal thickening at all late time points and concluded this technology was effective against neointima beyond the time of paclitaxel elution.

Preclinical porcine data used for regulatory submission of the TAXUS stent (Boston Scientific, Natick, Massachusetts) showed the device was safe but also showed no significant efficacy reducing neointima at 28 or 90 days compared with bare metal stents. TAXUS stent clinical data show excellent results at nine months for limiting restenosis (177). Earlier studies of the TAXUS stent are now in their third year and show major adverse clinical event rates of 3% compared with 10% in bare-metal stents. The comparable porcine model data show no change at 180 days from 90 days (unpublished data, personal communications). These crude comparisons suggest that safety, but not efficacy, can be predicted from low-level stent injury (balloon:artery ratio 1.1:1 or less) in the porcine model. Further analysis of paclitaxel animal model data and possibly new models may find application in better predicting clinical efficacy.
SUMMARY

What have we learned from animal restenosis models?

Several important principles summarize restenosis models for evaluating DES technologies. These are as follows:

1. Arterial and vascular injuries remain major determinants of neointimal thickening, and mechanical stent designs should limit arterial injury as best as possible.

2. Neointimal formation on DESs develops the same as in bare-metal stents. Thrombus and inflammation play key roles in forming human neointimal hyperplasia, and the polymers used in drug eluting stents incite mild inflammation. Optimal polymer selection may help to minimize this inflammation, and healing within DESs should be documented.

3. Although DESs limit neointimal formation, they may also delay or cause incomplete healing to a greater degree than in bare-metal stents. This is manifested clinically as incomplete endothelialization, unresorbed fibrin deposits, and drug effects typically consisting of hypocellular tissue near the drug-eluting struts. Because neointimal hyperplasia is a normal healing response, some degree of neointima, not obstructive to the lumen, is a desirable outcome for DESs.

4. Animal models, specifically the porcine coronary and rabbit iliac arteries, provide useful information regarding stent thrombosis risk in clinical trials and are thus a measure of safety. All animal studies should carefully determine causes of unexpected preclinical animal deaths, and tabulate stent thrombotic events.

5. Lumen loss in animal models results from several causes. These include medial or arterial cell death, inflammation, and neointimal thickening, results that have correlation in clinical trials. Poor preclinical results mandate strong caution in initiating clinical trials.

6. Efficacy testing in preclinical models has proven difficult to establish. It is unclear whether this is because current animal models do not accurately reflect the human coronary artery response to such stents or whether other causes need be sought. Prior preclinical studies with positive results that did not translate to patients may be due to improper or biased variable selection, or confounding effects of vascular injury.

What must yet be learned from animal restenosis models?

The science of preclinical restenosis models is a rapidly developing field and is undergoing intense study. What follows are several key but unanswered questions concerning restenosis models.

Incompletely healed vessels occur in the preclinical DES models. The importance of healing, with incomplete or absent endothelialization, unresorbed fibrin deposits, low-level inflammation, and medial cell dropout is not well understood. For example, the porcine coronary artery safety appears predictive of clinical safety. Actinomycin-D-eluting stents showed nonhealing to a large degree, stimulating porcine neointima. It is uncertain whether improved-yet-incomplete healing will similarly enhance neointimal formation.

The best variables to correlate preclinical models with clinical trials are unknown. Correlative research must be performed to determine which preclinical variables best translate quantitatively to clinical trials. Clarification of whether quantitative measurements of MLD, late loss/loss index, and IVUS-based measurements of neointima in the porcine model will translate well, or if at all, to clinical data. Careful preclinical studies should be conducted for comparison with clinical trials. It is suggested in the interim that angiographic and IVUS end points may best for study in patients, and these combined with histomorphometric data in animal trials should be the best obtainable.

The relative utility of different species is uncertain. Differences between rabbit and pig models must be examined to determine which best translate to patients. This point is key in the prediction of human clinical data from preclinical studies, and we must better understand whether safety (thrombosis and neointimal stimulation) translate for each model to clinical trials.

The optimal time point for termination in animal studies needs clarification to best predict human clinical results. Standard times for animal models are 28, 90, 180, or 365 days, and early positive animal data may become negative at later time points. The time course of arterial healing in animal models bears an uncertain relationship to patients and also must be better understood so that preclinical observations will yield accurate prediction for clinical trials with patient data. Model data at two-year to three-year time points may need examination and correlation with clinical results for accuracy. Additional time points may be important, but presently no clear answer is forthcoming. The time to endothelial recovery for different drug/polymer/stent configurations in injured vessels remains unknown and needs determination.

Several preclinical model enhancements are needed. More rapid turnaround time would be of substantial benefit because current preclinical data can take nine months or longer to process and evaluate. It may be possible that preclinical histomorphometric data (neointimal thickness, histopathologic percent stenosis, lumen size) can be predicted from preclinical quantitative coronary angiography and IVUS in the same animal premortem or postmortem. These parameters might provide a link with human data, and if true would be a major contribution to research and development in drug eluting stents.

Preclinical models are important but imperfect standards, having served the interventional community well for many years. Substantially more remains to be learned, especially regarding the positive predictive results in such models. Active research is aimed at developing a simple, inexpensive, rapid, and accurate preclinical model for human restenosis. This goal is achievable but will require thoughtful direction. Such a model will see rapid adoption for testing, evaluating, and
prediction and will continue to teach the interventional community important lessons about revascularization therapy.

Reprint requests and correspondence: Dr. Robert S. Schwartz, Minneapolis Heart Institute, Minnesota Cardiovascular Research Institute, 920 East 28th Street, Suite 300, Minneapolis, Minnesota 55407. E-mail: rss@rsschwartz.com.

REFERENCES

27. Schwartz et al. Preclinical Restenosis Models and DESs

JACC Vol. 44, No. 7, 2004
October 6, 2004:1373–85

