Mini-Focus: Transcatheter Closure of ASD and PFO

Association of Interatrial Shunts and Migraine Headaches
Impact of Transcatheter Closure

Babak Azarbal, MD, Jonathan Tobis, MD, William Suh, MD, Vicki Chan, BA, Catherine Dao, BA, Richard Gaster
Los Angeles, California

OBJECTIVES
To examine the relationship between patent foramen ovale (PFO) or atrial septal defect (ASD) with the incidence of migraine headache (MHA) and assess whether closure of the interatrial shunt in patients with MHA would result in improvement of MHA.

BACKGROUND
Migraine headache is present in 12% of adults and has been associated with interatrial communications. This study examined the relationship between PFO or ASD with the incidence of MHA and assessed whether closure of the interatrial shunt in patients with MHA would result in improvement of MHA.

METHODS
A sample of 89 (66 PFO/23 ASD) adult patients underwent transcatheter closure of an interatrial communication using the CardioSEAL (n = 22), Amplatzer PFO (n = 43), or the Amplatzer ASD (n = 24) device.

RESULTS
Before the procedure, MHA was present in 42% of patients (45% of patients with PFO and 30% of patients with ASD). At three months after the procedure, MHA disappeared completely in 75% of patients with MHA and aura and in 31% of patients with MHA without aura. Of the remaining patients, 40% had significant improvement (≥2 grades by the Migraine Disability Assessment Questionnaire) of MHA.

CONCLUSIONS
Transcatheter closure of PFO or ASD results in complete resolution of MHA in 60% of patients (75% of patients with migraine and aura) and improvement in symptoms in 40% of the remaining patients. Interatrial communications may play a role in the etiology of MHA either through paradoxical embolism or humoral factors that escape degradation in bypassing the pulmonary circulation. A randomized trial is needed to determine whether transcatheter closure of interatrial shunts is an effective treatment for MHA. (J Am Coll Cardiol 2005; 45:489–92) © 2005 by the American College of Cardiology Foundation

Because of increased associations, patent foramen ovale (PFO) has been implicated in the etiology of cryptogenic stroke secondary to paradoxical embolism (1,2), platypnea-orthodeoxia syndrome (3,4), neurologic decompression illness in scuba divers (3,5–7), and migraine headache (MHA) (5,8–13), especially in patients with migraine and aura.

See page 496

The purpose of this study was to examine the relationship between the presence of MHA in patients with either PFO discovered during evaluation of cryptogenic cerebrovascular accident or an atrial septal defect (ASD), and whether closure of these interatrial shunts had any effect on MHA.

METHODS
Patient population. A total of 102 consecutive adult patients underwent transcatheter closure of an interatrial communication (26 ASD and 76 PFO) using the Amplatzer device (AGA Medical, Minneapolis, Minnesota) (n = 45), the CardioSEAL (NMT Medical, Inc., Boston, Massachusetts) (n = 30), or the Amplatzer atrial septal occluder device (n = 27). Of the 102 patients with successful closure of their interatrial communication, 97 were available for follow-up, and follow-up was obtained in 89 (92%).

Procedure. Patients were usually given aspirin (81 to 325 mg daily) and clopidogrel (75 mg daily) a few days before the procedure. When a patient had been taking warfarin, it was discontinued four days before the procedure. Procedures were performed without general anesthesia and on an outpatient basis after August 2001. For PFO closures, transesophageal echocardiography (TEE) (n = 65) (14) or intracardiac echo (n = 11) (14–16) were used to guide the procedure to ensure that the device was optimally placed. All ASD closures were done with TEE guidance. Heparin was routinely administered at the start of the procedure to achieve an activated clotting time >250 s.

Follow-up evaluation. Patients were usually discharged taking aspirin (325 mg daily) and clopidogrel (75 mg daily). Standard endocarditis prophylaxis was prescribed. Warfarin use in addition to antiplatelet therapy was determined by the patient’s concomitant disease. Patients were followed clini-
ally and TEE was performed at one month after implantation.

Definitions of echocardiographic findings. The presence of a residual shunt at follow-up TEE examination was determined by color-flow Doppler for left-to-right shunt (17) and by agitated saline contrast injection into an antecubital vein for the presence of right-to-left shunt (18). Residual shunts were categorized into none, small, moderate to large by color Doppler flow and into none, small, moderate, and large by contrast injection. The presence or absence of an atrial septal aneurysm was determined as previously described (19). The presence of thrombus on the device in the follow-up period was defined as a new hypoechogenic non-planar, partially mobile structure.

Assessment of migraine headaches. Presence or absence of MHA was self-reported by patients on the basis of a diagnosis made by either their primary care physician or their neurologist. Migraine severity was assessed by using the previously validated Migraine Disability Assessment Questionnaire (MIDAS) (20–23). The MIDAS score is derived by adding up the number of functional days lost because of MHA and is graded from 1 to 4.

Statistical analysis. Continuous variables were analyzed using t tests and dichotomous variables were analyzed using chi-square tests. Continuous variables are expressed as mean values ± SD and dichotomous variables are expressed as a frequency percentage. A p value of <0.05 was considered to be statistically significant.

RESULTS

PFO closure. Of 76 patients, 50 (66%) were women and the mean age was 49 ± 13 years old (range 17 to 77 years). The majority of patients with PFO (52 of 76) had a PFO alone (68%); an atrial septal aneurysm was associated with the PFO in 24 patients (32%).

The CardioSEAL device was used in 30 patients, the Amplatzer PFO occluder device in 45 patients, and the Amplatzer septal occluder in 1 patient. A transseptal puncture technique was used in 15 patients (20%) (24).

Transesophageal echocardiography follow-up was available in 65 of 76 patients. The incidence of residual shunt did not differ between the CardioSEAL and the Amplatzer devices (4 of 26, 15% vs. 8 of 39, 21%, p = 0.27). All residual shunts were small (color Doppler jet <2 mm through the defect or the presence of 3 to 9 microbubbles in the left atrium by contrast injection). The incidence of thrombus formation at one month was 22% in patients receiving the CardioSEAL device and 0% in patients receiving the Amplatzer PFO device (25).

ASD closure. Of 26 patients with successful ASD closure, the average age was 41 ± 15 years, and 76% of these patients were women. All ASD closures were accomplished using the Amplatzer septal occluder device under TEE guidance. Transesophageal echocardiography follow-up was available in 23 patients. There was no incidence of thrombus formation on any of the devices. A small residual shunt was present in 7 of 23 patients.

Migraine headaches. Preoperatively, MHA was present in 37 of 89 (42%) patients (24 with aura and 13 without aura). Of these 37 patients with MHA who had successful transcatheter interatrial closure, 28 (76%) either had complete resolution or significant improvement in their MHA. Tables 1 and 2 summarize the effect of closure of interatrial communications on patients with known MHA. Postoperatively, MHA disappeared completely in 22 of 37 patients

Table 1. Association of Migraine Headache With Interatrial Shunts and Impact of Transcatheter Closure

<table>
<thead>
<tr>
<th></th>
<th>All Patients (n = 89)</th>
<th>PFO (n = 66)</th>
<th>ASD (n = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of migraine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any migraine</td>
<td>37 (42%)</td>
<td>30/66 (45%)</td>
<td>7/23 (30%)</td>
</tr>
<tr>
<td>MHA+</td>
<td>24 (27%)</td>
<td>20/66 (30%)</td>
<td>4/23 (17%)</td>
</tr>
<tr>
<td>MHA−</td>
<td>13 (15%)</td>
<td>10/66 (15%)</td>
<td>3/23 (13%)</td>
</tr>
<tr>
<td>Any improvement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any migraine</td>
<td>28/37 (76%)</td>
<td>24/30 (80%)</td>
<td>4/7 (57%)</td>
</tr>
<tr>
<td>MHA+</td>
<td>19/24 (79%)</td>
<td>16/20 (80%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>MHA−</td>
<td>9/13 (69%)</td>
<td>8/10 (80%)</td>
<td>1/3 (33%)</td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any migraine</td>
<td>22/37 (60%)</td>
<td>19/30 (63%)</td>
<td>3/7 (43%)</td>
</tr>
<tr>
<td>MHA+</td>
<td>18/24 (75%)</td>
<td>15/20 (75%)</td>
<td>3/4 (75%)</td>
</tr>
<tr>
<td>MHA−</td>
<td>4/13 (31%)</td>
<td>4/10 (40%)</td>
<td>0/3</td>
</tr>
</tbody>
</table>

| **ASD** = atrial septal defect; MHA+ = migraine headache with aura; MHA− = migraine headache without aura; PFO = patent foramen ovale. |

Table 2. Pattern of Headache Improvement in Patients After Closure of Interatrial Communication

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHA episodes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>12.4 ± 27.7</td>
<td>2.2 ± 5.4</td>
<td>0.004</td>
</tr>
<tr>
<td>Resolved completely</td>
<td>4.0 ± 6.4</td>
<td>0</td>
<td>0.008</td>
</tr>
<tr>
<td>Did not resolve completely</td>
<td>24.7 ± 31.5</td>
<td>5.5 ± 7.4</td>
<td>0.02</td>
</tr>
<tr>
<td>MHA severity (scale of 1–10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>6.4 ± 10.7</td>
<td>3.7 ± 5.1</td>
<td>0.0003</td>
</tr>
<tr>
<td>Resolved completely</td>
<td>6.6 ± 10.1</td>
<td>0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Did not resolve completely</td>
<td>6.2 ± 3.2</td>
<td>5.8 ± 2.7</td>
<td>0.7</td>
</tr>
<tr>
<td>MIDAS score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>19.1 ± 47.1</td>
<td>5.2 ± 26.6</td>
<td>0.08</td>
</tr>
<tr>
<td>Resolved completely</td>
<td>16.8 ± 54.8</td>
<td>0</td>
<td>0.16</td>
</tr>
<tr>
<td>Did not resolve completely</td>
<td>22.7 ± 34.1</td>
<td>12.8 ± 41.4</td>
<td>0.24</td>
</tr>
</tbody>
</table>

MHA = migraine headache; MIDAS = Migraine Disability Assessment Questionnaire.
(60%), in 18 of 24 patients (75%) with MHA with aura, and
in 4 of 13 patients (31%) with MHA without aura.

Of the remaining 15 patients, 6 (40%) had significant
improvement of ≥2 grades in incidence and severity of
MHA as assessed by the MIDAS questionnaire; there was
no difference in the effect on MHA in the patients treated
with the CardioSEAL device versus those treated with the
Amplatzer device or in patients with or without a small
residual shunt.

DISCUSSION

The prevalence of MHA in the general population is 12%
(26–28), but was 3.5 times higher (42%) in our patients
with interatrial communications. The prominent finding of
this observational study is that transcatheter closure of PFO
or ASD results in complete resolution of MHA in the
majority (60%) of patients and significant improvement (≥2
MIDAS grades) in symptoms in a large portion (40%) of
the remaining patients (overall, 76% of MHA resolve or
improve). In addition, this symptomatic improvement of
severe migraines persisted for the 12-month mean length of
our follow-up. Our observations complement other reports
(5,8–13) demonstrating an increased association of MHA
in patients with interatrial communications.

The association between closure of interatrial communi-
cation and improvement of headache appears to be stronger
with migraine and aura than with migraine without aura. In
this population, 75% of patients with migraine with aura
had complete resolution of their headache after successful
closure of the interatrial communication versus 31% of
patients with migraine headache without aura. However, a
majority of patients (69%) with migraine without aura still
experienced either a complete resolution of their migraine
headache or significant improvement of ≥2 MIDAS
grades.

Based on the association of PFO, cryptogenic stroke, and
MHA, several new hypotheses have been proposed for the
etiologic of MHA. It has been postulated that a MHA is due
to a small venous embolus that crosses the PFO paradoxo-
cally and passes to the cerebral circulation. Rather than
inducing a stroke, the small embolus or platelet plug
precipitates a spreading wave of depolarization that is
recognized as the neurologic phenomenon of migraine. In
support of this theory, one recent study demonstrated a
13.7-fold higher incidence of magnetic resonance imaging
lesions in migraine patients with aura than in controls (29).

Alternatively, we hypothesize that migraine is precipi-
tated in susceptible individuals by chemical substances that
can pass directly through the atrial shunt before they can be
detoxified in their first passage through the lungs. This
substance, in elevated concentration, could cause migraine
in susceptible individuals without a PFO, but if a PFO is
present it could potentially shunt from the venous to the
arterial system and reach the brain in a more concentrated
packet than if a central shunt were not present. In this
hypothesis, the presence of a PFO also predisposes to
paradoxical embolism and stroke and is the pathway for
emboli that produce the magnetic resonance imaging lesions
seen in patients with MHA (29). The “migraine stroke” is
probably not caused by intense vasospasm, but may be a
manifestation of a paradoxical embolism through a PFO.

Whatever theory of MHA is eventually validated, the
profound improvement in this debilitating condition by
closure of an interatrial shunt, as observed in these patients,
raises the possibility of providing a substantive treatment for
severe MHA. A prospective randomized trial is justified to
determine whether closure of PFO in patients with MHA
leads to significant reduction in the incidence of migraine
compared to medical therapy.

Study limitations. This study was a retrospective evalua-
tion and not a prospective randomized trial. The patient
group being studied consisted primarily of patients with a
history of cryptogenic stroke with a known interatrial
communication and is not representative of the general
population of patients with PFO. Although the MIDAS
questionnaire is a well-established tool in the evaluation of
the severity of MHA, it is a subjective method. All patients
were taking clopidrogel for three months and taking aspirin
indefinitely after closure of their interatrial communication;
therefore, improvement in MHA could be attributed in part
to use of these medications.

Conclusions. There is a 3.5-fold increased incidence of
MHA in patients with a PFO or ASD who are undergoing
transcatheter closure of their interatrial communication.
Transcatheter closure of PFO or ASD in patients with
MHA leads to resolution of or significant improvement in
severity of MHA in the majority (76%) of patients. A
prospective randomized trial is justified to determine
whether closure of PFO in patients with MHA leads to
significant reduction in the incidence of migraine compared
with medical therapy.

Reprint requests and correspondence: Dr. Jonathan Tobis,
Professor of Medicine, Department of Internal Medicine (Divi-
sion of Cardiology), 47-123 Center for Health Sciences, 650
Charles E. Young Drive South, Los Angeles, California 90095.
E-mail: jttobis@mednet.ucla.edu.

REFERENCES

foramen ovale as a risk factor for cryptogenic stroke. Ann Intern Med

in cryptogenic stroke patients with and without patent foramen ovale:

ovale: a review of associated conditions and the impact of physiological

4. Serrantino M, Resnekov L. Patent foramen ovale associated with

5. Wilmshurst PT, Nightingale S, Walsh KP, Morrison WL. Effect on
migraine of closure of cardiac right-to-left shunts to prevent recurrence
of decompression illness or stroke or for haemodynamic reasons.