explain these findings because they were similar between the groups.

Current risk stratification scores do not use BGL as a prognostic variable. Our findings demonstrate a two- to four-fold increased risk of death with high or low BGL after STEMI, highlighting an additive prognostic value to such models. Specifically, a BGL <81 mg/dl was associated with a 3-fold increased risk of death at 30 days (p = 0.01), whereas hypoglycemic patients with a TRS >4, had a >11-fold increased risk of death.

Although the Diabetic Insulin–Glucose Infusion in Acute Myocardial Infarction (DIGAMI)-2 trial showed no advantage for intensive glucose management (8), a need to identify high-risk patients with abnormal glucose metabolism remains. The negative results may reflect improved overall management of patients identified as high-risk. The effect of treating BGL abnormalities was not assessed in this study, but an understanding of the mechanisms leading to adverse outcomes with mild hyperglycemia or hypoglycemia in the STEMI population could perhaps lead to novel metabolic therapies to improve outcomes.

Duane H. Pinto, MD, FACC
Adam H. Skolnick, MD
Ajay J. Kirtane, MD
Sabina A. Murphy, MPH
Hal V. Barron, MD, FACC
Robert P. Giugliano, MD, FACC
Christopher P. Cannon, MD, FACC
Eugene Braunwald, MD, FACC
*C. Michael Gibson, MS, MD, FACC for the TIMI Study Group

*TIMI Study Group
Brigham and Women’s Hospital
Department of Medicine
350 Longwood Avenue, First Floor
Boston, MA 02115
E-mail: mgibson@perfuse.org

doi:10.1016/j.jacc.2005.03.052

Please note: Supported in part by a grant from Genentech, Inc., South San Francisco, California (TIMI-10A/B and LIMIT-AMI) and in part from Seattle (OPUS–TIMI-16). The authors have no conflicts of interest to disclose other than Dr. Barron is employed by Genentech, Inc. the sponsor of the TIMI-10A/10B and LIMIT-AMI trials.

REFERENCES


6. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part I: diagnosis and classifi-


Letters to the Editor

Frequency of Cardiac Troponin I Mutations in Families With Hypertrophic Cardiomyopathy in China

I read with interest the recent study on the frequency of cardiac troponin I (cTnI) mutations in families with hypertrophic cardiomyopathy (HCM) reported from the United Kingdom (1). It is amazing to note that the prevalence of cTnI mutations in the United Kingdom (3.1%) is almost identical to that in China (3%) (2).

My colleagues from Nanjing (formerly Nanking), China (2), studied 71 patients with HCM, 45 male and 26 female, ranging in age from 10 to 77 years (average age, 45.5 ± 17.2 years). Exons 7 and 8 of cTnI gene of the 71 patients and 100 normal controls were amplified by polymerase chain reaction (PCR), and the products of PCR were analyzed by direct sequencing. Two mutations of cTnI were identified in 71 patients with HCM (3%) but not in the normal controls. Pedigree investigation showed another carrier in each family: the cTnIR145W mutation carrier had no clinical abnormalities, and the cTnIR162Q Carrier had atrial fibrillation when he was in his 20s. Further animal work using recombinant cTnIR145W transduction into cultured mouse adult cardiomyocytes is in progress (2).

Therefore, as Maron (3) recently noted, HCM is indeed an important global disease. Not only is the prevalence of HCM in China (0.16%) (4, 5) almost the same as in the Western world (0.2%, according to the Coronary Artery Risk Development In Young Adults [CARDIA] study [6]), but the frequency rates of cTnI mutations are the same (3%) (1, 2). This low frequency is consistent with that reported from other countries (<5%) (5, 7).

Tsung O. Cheng, MD, FACC
*Department of Medicine
The George Washington University
2150 Pennsylvania Ave. NW
Washington, DC 20037
E-mail: cheng@mfa.gwu.edu


REFERENCES


REPLY

We thank Dr. Cheng for his interest in our work (1) and appreciate his comments. The prevalence of hypertrophic cardiomyopathy (HCM) appears similar among different racial groups. Population studies comprising more than 16,000 subjects from Japan, China, and the U.S. (Caucasian, African, and native Americans) have established that unexplained left ventricular (LV) wall thickness ≥15 mm occurs with a prevalence of about 0.2% (range 0.16% to 0.23%) (2–5). Recent genotype–phenotype studies have revealed that the disease expression of HCM is extremely heterogeneous and that many gene carriers present with electrocardiographic (ECG) abnormalities in the absence of LV hypertrophy on echocardiography. It is likely, therefore, that the true prevalence of HCM is well above 0.2% (1). Furthermore, the prevalence of HCM appeared to be similar in each of the screening studies despite considerable age differences in the study populations, which suggests that HCM may develop independently of age. This finding is in contrast to previous assumptions that HCM develops during adolescence and early adulthood. If this was the case, the prevalence would be age-dependent and expected to be high at young ages and low at older ages owing to increased mortality rates associated with HCM. Apparently, the number of individuals dying equals the number of individuals developing the condition at any age, resulting in a “steady-state” and age-independent prevalence of the condition.

The frequency of mutations in the gene for cardiac troponin I (TNNI3) has been reported in six larger studies (6–9). A total of 1,697 HCM patients have been investigated (range: 71 to 748 patients), with an average frequency of TNNI3 mutations of 2.7% (range 0.9% to 4.0%). The studies were conducted in patients in Great Britain, the U.S., France, China, Japan, Korea, and Germany. The modest differences in frequency of mutations are most likely explained by differences in sample sizes of patients and do not appear to be associated with race.

*Jens Mogensen, MD, PhD
William J. McKenna, MD
*Department of Cardiology
Skejby University Hospital
Brendstrupgaardvej
8200 Aarhus N
Denmark
E-mail: jens.mogensen@dadmndt.dk


REFERENCES


Impact of Carvedilol Before Angiotensin-Converting Enzyme Inhibitor Therapy on Cardiac Function

The study by Sliwa et al. (1) is indeed an eye-opener for those who depend on expert opinions such as those from the American College of Cardiology/American Heart Association guidelines (1,2). However, despite a well-executed study, I am not sure the conclusions drawn by the editor and investigators are entirely on the mark. My main criticism is that this is a “how-to” treat and not a “what to” treat study, and as a result it cannot ignore practicality issues. In clinical practice, how often do we see 78 consecutive newly diagnosed patients with New York Heart Association (NYHA) functional classification II to IV go directly to oral anticongestive therapy without the need for parenteral vasodilator intervention initially? In these patients, is it really practical to switch directly from parenteral therapy to oral beta-blockade without the support of an afterload reducing agent? Even among specialists, a measurable dropout rate would be expected if every patient went straight to a beta-blocker. In fact, the concept of using an inodilator to facilitate the commencement of a beta-blocker in those patients who would otherwise not tolerate adrenaline withdrawal or inhibition is for this very reason.

Conversely, concerning the control arm, are there many practitioners who would wait six months before introducing a beta-blocker? Therefore, I am surprised the researchers did not elaborate on the treatment status of the subjects before they were randomized to the carvedilol arm, and whether they encountered difficulties during up-titration. Furthermore, as a significant number of subjects expired during the study (11 of 78, 14% after 12 months), how many required readmission for decompensation and what happened to their beta-blocker dosing regimen?

As for the results, improved biochemical profile, NYHA functional class, and echocardiographic function in the carvedilol-initiated group would indicate that carvedilol is a more "potent"