Diagnostic and Therapeutic Challenges in Patients With Coexistent Chronic Obstructive Pulmonary Disease and Chronic Heart Failure

Thierry H. Le Jemtel, MD,* Margherita Padeletti, MD,† Sanja Jelic, MD†

New Orleans, Louisiana; and New York, New York

Chronic obstructive pulmonary disease (COPD) and heart failure (CHF) are common conditions. The prevalence of COPD ranges from 20% to 30% in patients with CHF. The diagnosis of CHF can remain unsuspected in patients with COPD, because shortness of breath is attributed to COPD. Measurement of plasma B-type natriuretic peptide (BNP) levels helps to uncover unsuspected CHF in patients with COPD and clinical deterioration. Noninvasive assessment of cardiac function may be preferable to BNP to uncover unsuspected left ventricular (LV) systolic dysfunction in patients with stable COPD. Patients with COPD or CHF develop skeletal muscle alterations that are strikingly similar. Functional intolerance correlates with severity of skeletal muscle alterations but not with severity of pulmonary or cardiac impairment in COPD and CHF, respectively. Improvement of pulmonary or cardiac function does not translate into relief of functional intolerance in patients with COPD or CHF unless skeletal muscle alterations concomitantly regress. The mechanisms responsible for skeletal muscle alterations are incompletely understood in COPD and in CHF. Disuse and low-level systemic inflammation leading to protein synthesis/degradation imbalance are likely to contribute. The presence of COPD impacts on the treatment of CHF, as COPD is still viewed as a contraindication to beta-blockade. Therefore, COPD often deprives patients with CHF due to LV systolic dysfunction of the most beneficial pharmacologic intervention. A large body of data indicates that patients with COPD tolerate well selective beta-blockade that should not be denied to CHF patients with concomitant COPD. (J Am Coll Cardiol 2007;49:171–80) © 2007 by the American College of Cardiology Foundation

Impact of COPD on the Diagnosis of CHF

Overlooked CHF in patients with COPD. Patients without known respiratory disease who complain of dyspnea or fatigue during exercise undergo noninvasive cardiac imaging that establishes the diagnosis of heart failure when it demonstrates left ventricular (LV) dysfunction. When patients with stable COPD complain of dyspnea or fatigue during exercise, these symptoms are often attributed to COPD, noninvasive cardiac imaging is not performed, and LV dysfunction remains undetected (4). In all studies but 1, the prevalence of COPD ranges from 20% to 32% in patients with CHF (4–11). The outlier study reported a 10% prevalence of COPD in patients hospitalized for CHF (10). The risk ratio of developing CHF is 4.5 (95% confidence interval [CI] 4.25 to 4.95) in COPD patients compared with age-matched controls without COPD after adjustments for cardiovascular risk factors (12). The rate-
adjusted hospital prevalence of CHF is 3 times greater among patients discharged with a diagnosis of COPD compared with patients discharged without mention of COPD (13). Furthermore, the prevalence of hospitalization for CHF increased at a much higher rate from 1971 to 2001 when discharge coding included COPD as primary or secondary diagnosis than when COPD was not mentioned as a diagnosis (13). The Northern California Kaiser Permanente Medical Program has reported an age-adjusted relative rate of hospitalization for CHF of 5.55 (95% CI 4.71 to 5.73) and an odds ratio of CHF as a comorbidity of 8.48 (95% CI 7.65 to 9.40) in COPD patients compared with controls (14).

COPD as a cardiovascular risk. The high prevalence of CHF in patients with COPD is not surprising, because COPD patients are at increased risk of cardiovascular mortality or morbidity independently of other risk factors, including tobacco use. Forced expiratory volume in 1 s (FEV₁) is as good a predictor of cardiovascular mortality as serum cholesterol (15). Ischemic heart disease, and not respiratory failure, is the leading cause of death in COPD patients, with only a small fraction dying of respiratory failure (16). The relationship between COPD and cardiovascular events remains unclear. Patients with COPD are not at increased risk for hypertension or LV hypertrophy; however, they consistently show evidence of low-grade systemic inflammation that plays an increasingly recognized role in the pathogenesis of atherosclerosis (17). Patients with severe COPD are 2.18 and 2.74 times more likely to have elevated and highly elevated, respectively, circulating C-reactive protein levels than control subjects (18). A working hypothesis to account for the high prevalence of LV systolic dysfunction in patients with COPD is that low-grade systemic inflammation accelerates progression of coronary atherosclerosis, which ultimately results in ischemic cardiomyopathy. Such a hypothesis fits the clinical observation of a high incidence of LV wall motion abnormalities noted in patients with COPD and LV dysfunction (19).

Uncovering CHF during COPD exacerbation. The diagnostic usefulness of measuring B-type natriuretic peptide (BNP) plasma levels in patients presenting to an emergency room with dyspnea is now well established and was recently reviewed (20–22) (Fig. 1). A BNP level of < 100 pg/ml in a patient with known COPD consulting for clinical deterioration alerts to the presence of overt CHF whether or not the patient is known to have CHF. A BNP level of > 500

![Figure 1 Evaluation of Heart Failure During COPD Exacerbation](image-url)

Brain natriuretic peptide (BNP) serum levels and detection of chronic heart failure (CHF) in patients with exacerbation of chronic obstructive pulmonary disease (COPD). CHF is unlikely when BNP levels are < 100 pg/ml. A BNP level of > 500 pg/ml indicates overt left-sided (L) CHF and the need for treatment. BNP levels ranging from 100 to 500 pg/ml indicate right-sided (R) heart failure, moderate left-sided heart failure, or both and the need for treatment. Once patients have returned to baseline status, cardiac imaging needs to be performed and therapy adjusted. 2D = 2-dimensional; ACE = angiotensin-converting enzyme; RNV = radionuclide ventriculography.
pg/ml does not differentiate cardiac from pulmonary deterioration as the cause of clinical worsening but indicates that CHF therapy should be initiated or upgraded in addition to treatment of COPD. In contrast, a BNP level of <100 pg/ml argues against CHF decompensation as the cause of clinical deterioration but does not completely eliminate acute heart failure as the triggering factor of clinical deterioration (A. Maisel, personal communication, July 2006).

A BNP level between 100 to 500 pg/ml points toward right ventricular failure, moderate LV failure, or both and the need to initiate therapy with angiotensin-converting enzyme (ACE) inhibitors and possibly loop diuretics. Once patients with COPD exacerbation have returned to their baseline status, cardiac imaging needs to be performed and therapy adjusted according to the findings.

Ascertaining CHF in patients with stable COPD. Because 20% to 25% of ambulatory patients with CHF have BNP levels of <100 pg/ml, echocardiography appears more reliable than BNP levels to detect unsuspected LV systolic dysfunction in patients with stable COPD (23) (Fig. 2). Radionuclide ventriculography (RNV) may be obtained when a poor acoustic window impedes evaluation of LV function by echocardiography in COPD patients.

Patients with COPD found to have an LV ejection fraction of ≤40% need to receive full CHF therapy, including beta-adrenergic blockade. Patients with COPD with normal LV ejection fraction and normal LV mass or LV filling do not require CHF therapy. The diagnosis of diastolic heart failure is particularly difficult to establish in patients with COPD. The diagnosis of diastolic heart failure needs to be entertained in COPD patients with LV ejection fraction >40% and abnormal LV mass or enlarged left atrium by echocardiography or impaired LV filling by RNV, and the response to ACE inhibitors and loop diuretics needs to be closely monitored. Standard echocardiographic indices of LV diastolic dysfunction do not reliably permit the diagnosis of diastolic heart failure, but the diagnosis can be established by comprehensive Doppler echocardiography and myocardial tissue imaging, which provide evidence for impaired myocardial relaxation, decreased LV compliance, and increased LV filling pressure (24,25).

In summary, COPD is an important risk factor for cardiovascular morbidity and mortality in the general population. Chronic heart failure is often unrecognized despite its high prevalence in COPD patients. Elevated BNP plasma levels should alert to the presence of CHF in patients with COPD exacerbation. The 20% to 30% prevalence of CHF in ambulatory patients with stable COPD mandates noninvasive assessment of LV function to avoid undue delays in the diagnosis and therapy of previously unrecognized CHF.

Skeletal Muscle Alterations in Patients With CHF and COPD

Although CHF and COPD primarily involve different organs, patients with CHF and COPD develop strikingly
similar skeletal muscle (SM) alterations (26,27). In brief, SM alterations in CHF and COPD include decreased muscle strength and mass with reduced cross-sectional area, fiber shift with atrophy of type I oxidative fibers, and relative increase in glycolytic type IIa and IIb fibers accompanied by an increase in glycolytic and a decrease in oxidative enzymatic activities (27–29). Whether the enzymatic alterations are the cause or consequence of the fiber shift remains to be determined. Use of 31-P nuclear magnetic resonance spectroscopy has demonstrated reduced concentration of high-energy phosphate at rest, which becomes more pronounced during exercise with a faster drop in pH and a slower rephosphorylation after exercise in patients with CHF or COPD compared with age-matched controls (27). Loss of SM mass and the resulting muscle atrophy have major clinical and therapeutic implications in CHF and COPD.

SM atrophy in CHF and COPD. Muscle atrophy contributes to muscle fatigue during exercise, which leads patients with CHF or COPD to discontinue exercising although they have not exhausted their cardiac or pulmonary reserve (30,31). Peak oxygen uptake is linearly related to SM mass in patients with CHF and or COPD (32–34). As the disease progresses, SM atrophy worsens and patients with CHF or COPD become increasingly symptomatic (Fig. 3). Therapeutic interventions that improve LV and pulmonary function in patients with CHF and COPD, respectively, do not reliably reverse SM atrophy and thus do not consistently alleviate functional intolerance (35,36). Therefore, interventions that primarily aim at reversing SM atrophy are needed to complement existing interventions that improve cardiac and pulmonary function in patients with CHF and COPD, respectively.

Mechanisms of SM atrophy in CHF or COPD. The events and mechanisms that lead to SM atrophy are incompletely understood in patients with CHF and COPD. Muscle disuse, low-level systemic inflammation, and increased oxidative stress contribute to reduced protein synthesis and accelerated protein degradation and thus to SM atrophy (37) (Fig 4). Muscle disuse evolves as dyspnea and fatigue prompt patients to progressively avoid all physical activities. Patients are often unaware of the progressive decline in physical activities, which is not readily quantifi-
able. However, the overt benefits of a rigorous training program corroborate the importance of disuse as a cause of SM atrophy in patients with CHF or COPD (38,39). Besides SM disuse, low-level systemic inflammation and increased oxidative stress are responsible for SM atrophy in CHF and COPD. Circulating levels of proinflammatory cytokines are elevated in patients with CHF and COPD, and 8-isoprostanes are elevated in the pericardial fluid of patients with CHF (40,41). The source of systemic inflammation appears to be in the small airways in COPD and is unclear in CHF (42,43).

Signaling pathways of disuse and inflammation. Both disuse and inflammations set off SM atrophy by reducing protein synthesis, increasing protein degradation, or both (44) (Fig. 4). Reduced protein synthesis and increased protein degradation share common pathways (37). Insulin resistance and reduced tissue concentration of insulin growth factor (IGF)-1 reduce phosphorylation of phosphatidylinositol-2-OH kinase (PI3K), which in turn reduces activation of Akt (protein kinase B), thereby reducing protein synthesis via reduced phosphorylation of mammalian target of rapamycin (mTOR) and glucogen synthase kinase (GSK). Reduced Akt activation increases activity of forkhead box O (FOXO) transcription factors, thereby activating the ubiquitin-proteasome pathway and promoting protein degradation. Reduced IGF-1 levels and insulin resistance activate caspase-3, resulting in protein breakdown and degradation. Whether activated caspase-3 results in muscle apoptosis is controversial.

Emerging therapeutic approaches in CHF and COPD. Since it was shown to lower mortality 2 decades ago, ACE inhibition has been the cornerstone of treatment of CHF (61). More recently, ACE inhibition was shown to prevent cachexia and SM atrophy and to improve respiratory muscle strength in patients with CHF (62–64). Because the beneficial effects of ACE inhibition on muscles are partially mediated by a reduction in angiotensin II levels, which in turn attenuates the decline in IGF-1 levels, achieving complete ACE inhibition may be of special interest to prevent SM atrophy in CHF and potentially in COPD (65). Modulation of the renin-angiotensin system with ACE inhibition or angiotensin receptor blockade (ARB) may have dual benefits in patients with COPD by lowering cardiovascular risk and preventing lung injury (66,67). However, ARB failed to improve respiratory or SM strength in patients with COPD without cardiovascular diseases nor the exercise capacity or dyspnea score in patients with COPD and pulmonary hypertension (68,69).
When they receive ACE inhibitors, patients with COPD are not at increased risk of cough or bronchospasm (70). Occurrence of cough in patients with COPD is more likely to be related to unsuspected CHF than to ACE inhibition. Human menopausal gonadotropin-CoA reductase inhibition with simvastatin inhibits development of emphysema, inflammation, and pulmonary hypertension in a rat model of smoking-induced lung injury (71). Simvastatin also reverses pulmonary hypertension in a rat model of toxic injury to the pulmonary vasculature (72). The pleiotropic effects and, especially, the anti-inflammatory action of simvastatin are likely to mediate its benefits in experimental models. Administration of simvastatin for 14 weeks improves LV ejection fraction and functional status in patients with CHF due to idiopathic cardiomyopathy (73). These preliminary findings with simvastatin contrast with the negative experience with tumor necrosis factor α antibodies (74,75). A nested case-control study of elderly COPD patients with and without known CAD who were receiving statins, ACE inhibitors, or ARBs alone or a combination of statins with either ACE inhibitors or ARBs advocates that these agents may have cardiopulmonary protective properties (76). Statins alone and in combination with either ACE inhibitors or ARBs reduced hospitalizations for COPD (77). Because only a minority of patients with CHF (<4%) were included in that case-control COPD study, one cannot extrapolate the results to patients with coexistent CHF and COPD. Whether these agents have dual cardiac and pulmonary protective properties needs to be confirmed in randomized clinical trials.

BB in Patients With CHF and COPD

Long-term BB is underused in CHF patients (3,77). Underuse of BB in CHF is largely due to the entrenched belief that it may precipitate respiratory deterioration when COPD coexists with CHF. Few reports of acute bronchospasm after initiation of BB lead to exclusion of patients with coexistent CHF and COPD from large BB trials (78). Beta-blockers remain underprescribed to patients with CHF and COPD despite extensive safety data in patients with moderate to severe COPD (77,79,80).

Selective beta-1 adrenergic blockade. Respiratory symptoms and FEV₁ are not significantly worsened by selective beta-1 blockade (B1B) in COPD patients (80–86). Selective B1B with metoprolol succinate or tartrate was well tolerated for 3 months by 50 patients with coexistent ischemic cardiac disease and mild to severe COPD (87). Patients remained free of adverse respiratory effects, and FEV₁ was unchanged. Selective B1B does not attenuate beta-2 receptor (B2R) agonist-induced bronchodilatation (82). The cumulative evidence from trials and meta-analysis indicates that selective B1B should not be withheld when COPD coexists with cardiovascular diseases, because the benefits of selective B1B in cardiac patients with COPD far outweigh the risks (80,88).

Nonselective BB combined with alpha-blockade. The safety profile of carvedilol and labetalol that combine alpha-adrenergic blockade with nonselective BB is not as well-established as that of selective B1B in COPD. Labetalol at maximal dose does not affect FEV₁ in COPD (79). Among 89 patients with coexistent COPD and CHF who received carvedilol for at least 3 months, only 13 did not tolerate carvedilol (89). The reasons for intolerance and the presence of reversible airflow obstruction were not specified. Thirty-one patients with coexistent CHF and COPD without reversible airflow obstruction receiving a mean dose of 29 ± 19 mg daily carvedilol were followed for a mean duration of 2.4 years (90). Only 1 patient did not tolerate carvedilol because of COPD exacerbation. Cardiac size and function improved similarly in patients with coexistent CHF and COPD and in patients with CHF alone after receiving nonselective beta- and alpha-adrenergic blockade for 24 months (89,91). Data regarding the use of carvedilol in COPD patients with reversible airflow obstruction are not available. In contrast to selective B1B, nonselective blockade attenuates B2R agonist-induced bronchodilatation.

Clinical experience with selective B1B and combined nonselective and alpha-blockade in COPD. Beta-blockade with selective and nonselective agents does not affect the rate of hospitalization for COPD exacerbation in patients with recent myocardial infarction, whereas it beneficially impacts mortality (92,93). Although case studies have documented nonselective BB-triggered bronchospasm, BB with selective and nonselective agents does not appear to affect the rate of hospitalization for COPD exacerbation (94). Therefore, current guidelines from the Heart Failure Society of America recommend BB in all patients with coexistent COPD and CHF (88). The use of BB in patients with COPD and CHF can be substantially and safely increased by a structured outpatient program (95). The clinical experience and pulmonary effects of the 3 beta-blockers currently approved for the treatment of CHF are summarized in Table 1.

Lastly, 3 issues regarding BB in COPD patients will be briefly reviewed. They are time dependence of pulmonary effects, receptor selectivity, and concomitant use of BB and beta-2 agonists.

Time dependence of BB-induced pulmonary effects. As observed with LV function, acute and long-term BB appears to have opposite effects on lungs. Airway hyperresponsiveness (AHR), as defined by an FEV₁, decline of ≥20% after inhalation of metacholine, is associated with increased mortality in patients with COPD (96). Acutely administered selective or nonselective BB increases AHR in patients with COPD (82). However, after an initial increase, long-term administration of carvedilol or nadolol reduces AHR in a murine model of asthma (97). No data are presently available regarding the effects of long-term BB on AHR in patients. Similarly, beta-receptor (BR) density, although unaffected by acute BB, increases during long-term BB (97). Increased BR density may be beneficial as
experimental over-expression of B2R increases adenyl cyclase activity in airway smooth muscle and reduces AHR (98).

In summary, the detrimental effects of acute BB on AHR may with time convert into beneficial effects. Accordingly, early mild deterioration in pulmonary symptoms or FEV1 in patients with coexistent CHF and COPD should not prompt BB discontinuation. Close observation is recommended and BB discontinuation is warranted when pulmonary symptoms persist or worsen.

Receptor selectivity of BB. Selective B1Bs have a 20-fold higher affinity for B1R than for B2R. Selective B1Bs are presumably less likely to induce bronchoconstriction than nonselective BBs (99). However, the receptor selectivity of BBs varies in experimental models (100). Receptor selectivity varies for the following reasons: 1) B2Rs predominate in bronchial smooth muscle, whereas B1Rs account for 10% and 30% of beta-receptors in submucosal glands and alveolar walls, respectively (101); 2) selective B1Bs appear to lose selectivity at the high end of dose ranging; 3) several polymorphisms of beta-receptor have been reported; and 4) exposure to agonists may alter B2Rs such that the affinity for ligands is reduced 10-fold (102). Consequently, prior exposure to beta agonists may reduce binding of antagonists to B2Rs. It may explain the high tolerance for BB in COPD patients who routinely inhale B2R agonists.

In summary, BB receptor selectivity varies in experimental settings. Whether such variability has therapeutic implications remains unclear in patients with COPD.

Concomitant use of BB and inhaled beta-agonists. Owing to the cardiovascular risks associated with the use of inhaled B2R agonists, nonselective BB may be particularly beneficial in patients with CHF and COPD. Deleterious cardiovascular effects of inhaled B2R agonists, the mainstay of COPD therapy, are now increasingly recognized. Recent meta-analysis of 5 single-dose and 6 longer-duration trials of B2R agonists has underlined their adverse cardiovascular effects in COPD patients (103). Therapy with inhaled B2R agonists is associated with an increased risk for CHF decompensation (adjusted OR 3.42, 95% CI 1.99 to 5.86) and all-cause mortality in patients with CHF (104,105). Inhaled B2R agonists induced adverse cardiac effects in COPD patients with pre-existing cardiovascular disease (106). The adverse effects of B2R agonists are likely to be exacerbated in COPD patients with coexistent CHF. The efficacy of concomitant BB to offset the adverse cardiovascular effects of B2R agonists in COPD patients with coexistent CHF has not yet been assessed in clinical trials.

In summary, BB therapy should be attempted with selective beta-1 adrenergic blockade or combined nonselective beta- and alpha-adrenergic blockade in all CHF patients with coexistent COPD who do not have reversible airway obstruction. Selective BB is recommended in patients with CHF and COPD who have reversible airway obstruction in the absence of safety data regarding combined nonselective beta- and alpha-adrenergic blockade. Both selective beta-1 and com-
bined nonselective beta- and alpha-adrenergic blockade are to be avoided during COPD exacerbation until safety data are available.

Reprint requests and correspondence: Dr. Thierry H. Le Jemtel, Section of Cardiology, Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, Louisiana 70112-2699. E-mail: lejemtel@tulane.edu.

REFERENCES

