The Relationship Between Pre-Participation Screening of Young Competitive Athletes and Family Screening

With great interest we read the review by Corrado et al. (1) on pre-participation screening (PPS) of young competitive athletes to prevent sudden cardiac death (SCD).

It is important that Corrado et al. (1) briefly mentioned the possibility of cascade screening of relatives of a competitive athlete with an inherited heart disease. Unfortunately, this topic is frequently neglected in articles on PPS. As the authors state, identifying other affected family members with subsequent high-risk stratification and treatment can save additional lives.

Hypertrophic cardiomyopathy (HCM), which can be detected by PPS (1), is the most important cause of SCD in young athletes. At present, a mutation is identified in 30% to 61% of HCM patients (2). The identification of a disease causing mutation enables cascade screening within a family. With the developments in diagnostic tools for DNA analysis (e.g., high-throughput techniques), the proportion of mutations identified will probably increase. In case no mutation is found (yet) in an HCM patient, cardiological examination of first-degree relatives is the second best option.

One could argue that affected family members identified by cascade screening should be taken more into account when discussing the efficacy of PPS. In any case, performing cascade screening after identification of an affected athlete by PPS could contribute to reducing the incidence of SCD in the general population.

Moreover, implementing and offering an adequate nationwide family screening program to relatives of young SCD victims or patients with inherited heart disease could indentify most individuals and families in the country at risk of SCD. This would potentially decrease the benefit of PPS in competitive athletes, because this target group would become an even more selected healthy population.

Christian van der Werf, MD
Irene M. van Langen, MD, PhD
*Arthur A. M. Wilde, MD, PhD
*Academic Medical Center
University of Amsterdam
Heart Failure Research Center
Department of Cardiology
Meibergdreef 9
1105 AZ Amsterdam
the Netherlands
E-mail: a.a.wilde@amc.uva.nl


REFERENCES


Reply

We appreciate the interest of Dr. van der Werf and colleagues in our recent review (1). Their comments provide an opportunity to further clarify some aspects concerning appropriate strategies for sudden death prevention. The majority of conditions carrying risk of arrhythmic cardiac arrest in young people and athletes are genetically determined diseases with an autosomal dominant pattern of inheritance. Universal evaluation of the general population for inherited heart diseases is not currently feasible, because of the prohibitive costs and the limited diagnostic accuracy of both clinical and genetic evaluation. A reasonable alternative strategy is to target high-risk subgroups (1,2). Patients with cardiac symptoms, such as syncope or pre-syncope, are the first group that needs accurate cardiologic assessment. However, most inherited cardiomyopathies (including ion channel diseases) show a silent clinical course that might lead to arrhythmic cardiac arrest in the absence of warning disabling symptoms and ventricular dysfunction (1,3).

The individuals at risk are unlikely to be identified on the basis of spontaneous symptoms, strategies for prevention of sudden death rely on programs of actively searching for high-risk subjects. These prevention strategies include: 1) pre-participation screening of competitive athletes who show a 3-fold increase of the relative risk of sudden cardiac death compared with their nonathletic counterparts; and 2) cascade screening of relatives of sudden cardiac death victims or probands with an inherited heart disease, who have a 50% chance of inheriting the gene defect and the potentially malignant clinical phenotype. The current evidence is that pre-participation electrocardiographic evaluation of young competitive athletes is effective in identifying athletes with potentially lethal cardiovascular disease and actually saves lives, although no data on the efficacy of clinical cascade screening for sudden death prevention are available. At the present time, systematic molecular genetic screening for inherited heart diseases is impractical because it is time-consuming, costly, and—particularly—lacks accuracy given that many disease-causing genes remain to be discovered. Instead, a selective genetic screening of family members of a proband who has been identified with a causative mutation is feasible and offers clear advantages over clinical screening. Genotyping facilitates cascade screening, because it allows for definitive reassurance of true gene-negative family members and focuses prevention strategies on proven gene-carriers. Clinical manifestations of inherited heart diseases are usually preceded by a long “pre-clinical” phase, and cardiac arrest often occurs in previously asymptomatic young adults and com-
petitive athletes. All efforts should be made to identify and manage younger affected family members before life-threatening ventricular arrhythmias occur. These efforts are justified by the recognition that early diagnosis and timely therapy, predominantly by implantable defibrillator, provides life-saving protection (3). Although we agree with the comments that a nationwide clinical and genetic screening for inherited heart diseases is warranted, we believe that pre-participation evaluation of young competitive athletes and familial cascade screening should not be considered mutually exclusive—rather, they should interact synergistically to achieve early (pre-symptomatic) identification of individuals affected by inherited cardiomyopathies at risk of sudden cardiac death.

*Domenico Corrado, MD, PhD
Cristina Basso, MD, PhD
Maurizio Schiavon, MD
Antonio Pelliccia, MD
Gaetano Thiene, MD

*Department of Cardiac, Thoracic and Vascular Sciences
University of Padua Medical School
Via Giustiniani, 2
Padua 35121
Italy
E-mail: domenico.corrado@unipd.it
doi:10.1016/j.jacc.2009.02.055

REFERENCES

Pre-Participation Sports Clearance

As an outspoken critic of the current state of pre-sports screening in the U.S. (1), I applaud Corrado et al. (2) and Pelliccia et al. (3) for their scientific and thorough efforts to detect conditions responsible for sudden cardiac death in athletes and adopting standardized procedures for screening. Although I agree that routine electrocardiograms (ECGs) can help detect hypertrophic cardiomyopathy, long-QT syndrome, and arrhythmogenic right ventricular dysplasia, there is one diagnosis for which ECGs seem unhelpful: congenital anomalies of the origin of the coronary arteries (4,5).

Basso et al. (5) himself reported that this diagnosis is responsible for between 5% and 35% of all sudden cardiac death in adolescents. As a result, I was surprised that this diagnosis was given little attention by these articles. Corrado et al. (2) lumped congenital anomalies of the origin of the coronary arteries with premature coronary artery disease. These 2 diagnoses have different demographics, etiologies, prevalences, pre-sentations, and suitability of screening. As far as I know, the findings listed in the chart on page 1,984 of his article are all diagnostic for premature coronary artery disease and are of limited or no value in diagnosing congenital anomalies of the origin of the coronary arteries (2,4). Pelliccia et al. (3) failed to mention both diagnoses in their article.

In my pediatric cardiology practice, congenital anomalies of the origin of the coronary arteries is the diagnostic possibility of the most concern in athletes, especially ones complaining of nonspecific symptoms such as chest pain. I order more echocardiograms on young athletes and spend more time personally performing and reviewing echocardiograms to make this diagnosis than with hypertrophic obstructive cardiomyopathy or long-QT syndrome, which are easier to diagnose with echocardiogram and ECG. It seems to me that no matter how powerful the ECG is for screening for the other diagnoses, we are still going to have to evaluate and personally do an echocardiogram on nearly all competitive athletes if we are going to rule out congenital anomalies of the origin of the coronary arteries and thus significantly reduce the incidence of sudden cardiac death in adolescent athletes. I fail to see how this is financially feasible.

*Jonathan D. Reich, MD, MSc

*Pediatric Cardiology
The Watson Clinic, LLP
1600 Lakeland Hills Boulevard
Lakeland, Florida 33805
E-mail: jdreich@hotmail.com
doi:10.1016/j.jacc.2009.01.074

REFERENCES

Reply

We thank Dr. Reich for his interest in our review (1). We agree with his comments that congenital coronary artery anomaly is an important cause of sudden death in young competitive athletes and that its clinical detection in young competitive athletes undergoing pre-participation screening is challenging. The most frequent anatomical variant leading to cardiac arrest consists of both coronary arteries arising either from the right or the left coronary sinus, with the aberrant coronary artery coursing between the aorta and the pulmonary trunk. Retrospective analyses of clinical and pathological series have consistently shown that neither routine 12-lead electrocardiogram (ECG) nor exercise testing are particularly informative for the diagnosis of the anomalous origin of a coronary artery from the