Rac1 and Connective Tissue Growth Factor
The Missing Link Between Atrial Remodeling and the Pathogenesis of Atrial Fibrillation*

James K. Liao, MD
Boston, Massachusetts

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and a major cause of morbidity and mortality (1). AF typically occurs after cardiac surgery or in patients with hypertension or ischemic, valvular, structural, or metabolic heart disease (2). In some cases, AF has no clear etiology, which is often referred to as lone or idiopathic AF. Nevertheless, most patients with AF have increased left atrial size (3), and AF patients with left atrial enlargement have poorer cardiovascular prognosis compared with patients who have normal left atrial dimensions (4). However, left atrium enlargement could also be a consequence of AF (5). Histological biopsy studies in patients with lone AF revealed increased atrial inflammation and fibrosis (6). Indeed, fibrosis and extracellular matrix remodeling are important components of left atrial enlargement (7,8), and increased left atrial volume is a strong predictor of post-operative AF (9). These findings suggest that left atrial fibrosis could contribute to the pathogenesis of AF. However, the precise signaling pathways that mediate these changes in the left atrium are not known.

To obtain greater insights into the pathophysiological mechanism of AF, Adam et al. (10), in this issue of the Journal, performed transcriptional profiling analysis on tissues from the left atrial appendage of patients in sinus rhythm (SR) or chronic AF undergoing mitral valve surgery. Despite similar left atrial dimensions, patients with AF were found to have increased expression of genes that are involved in interstitial fibrosis such as collagen and connective tissue growth factor (CTGF). This was associated with increased expression of adherens junction protein, N-cadherin, and gap junction protein, connexin-43, which are important mediators of electrophysiological properties of the left atrium. The expression of connexin-40, however, was unchanged, which is in contrast to other clinical studies showing that AF is associated with somatic mutation or increased expression of connexin-40 (11,12).

Previous studies have shown that angiotensin II activates Rac1, leading to collagen synthesis, fibrosis, and atrial remodeling (13). Interestingly, angiotensin receptor blockers have been shown to prevent new-onset and recurrent AF (14,15). The small guanosine triphosphate (GTP)-binding protein, Rac1, is a member of the Rho GTPase superfamily of intracellular signal transducers, which is involved in the regulation of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidative stress (16). The activity of Rac1 and Rac1-mediated NADPH-derived superoxide ion production are increased in the atria of patients and animals with AF (17,18). Furthermore, Rac1 mediates the downstream localization of connexin-43 by N-cadherin (19). Thus, it is likely that the up-regulation of Rac1 contributes to the pathogenesis of AF. To determine whether Rac1 mediates atrial remodeling through increased expression of CTGF, N-cadherin, and connexin-43, the authors generated transgenic mice with cardiac-specific overexpression of a constitutive active Rac1 mutant, namely, RacET mice. They found that RacET mice exhibited increased expression of CTGF, N-adherin, connexin-43, and interstitial fibrosis whether or not the mice were in SR or AF, suggesting that increased Rac1 activity and not AF precedes atrial remodeling.

Because Rac1 requires post-translational modification by isoprenylation for proper intracellular trafficking and function, Rac1 could potentially be inhibited by 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors or statins, which block isoprenoid synthesis (20). Indeed, statins inhibit angiotensin II-induced increased myocardial oxidative stress and cardiac remodeling by inhibiting Rac1-mediated NADPH oxidase activity (21,22). Furthermore, statin therapy is associated with reduced incidence of AF in post-operative patients (23). Consistent with these findings, Adam et al. (10) found that treatment of RacET mice with rosuvastatin decreased the expression of CTGF, N-cadherin, and connexin-43, and reduced the incidence of AF. Thus, these results suggest that inhibition of angiotensin II-induced Rac1 activity with angiotensin receptor blockers, Rac1 inhibitors, or statins may have therapeutic benefits in the prevention of atrial remodeling and the subsequent development of AF.

Although the results of this study support the conclusion that Rac1 and CTGF are involved in the pathogenesis of AF, the causality between Rac1, CTGF, and AF in humans

*Editorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology.

From the Vascular Medicine Research Unit, Cardiovascular Division, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts. This work was supported by grants from the National Institutes of Health (HL052233 and HL080187). Dr. Liao has received research sponsorship from Boehringer Ingelheim and has served on the Speakers’ Bureau for AstraZeneca, Boehringer Ingelheim, Merck, and Pfizer.
remains unclear. For example, animals treated with angiotensin II exhibit increased myocardial Rac1 activity, and cardiac fibrosis develops, but not AF (22). Also, AF does not develop in most of the RacET mice, despite increases in the expression of CTGF, N-cadherin, and connexin-43, and interstitial fibrosis comparable to those of RacET mice that do have AF. Furthermore, it is unlikely that there are any pathological conditions in humans where AF is associated with a 30-fold increase in Rac1 expression similar to what was observed in the RacET mice used in this study. Finally, thus far, genetic mapping studies of patients who are more or less susceptible to or at risk for AF have not localized any mutations to the Rac1 locus, which is located on chromosome 7p22 (24,25). Thus, the general applicability of these findings to patients with AF of various etiologies is uncertain.

The beneficial effects of statins on atrial remodeling and AF are suggestive of Rac1, but because statins could also inhibit other isoprenoid-dependent pathways, such as the Ras and Rhe/Rho kinase (ROCK) pathways, their inhibitory effects on atrial fibrosis and AF may not be due entirely to Rac1 inhibition. Indeed, deletion or inhibition of ROCK1 also leads to decreased angiotensin II-induced CTGF expression and cardiac fibrosis (26,27). Thus, the potential benefits of statin therapy in AF may extend beyond their inhibitory effects on Rac1. For these reasons, it would probably have been more definitive to use a genetic loss-of-function rather than a gain-of-function model of Rac1 to demonstrate that Rac1 is obligatory for the development of AF. Thus, further studies are required to determine whether increased Rac1 activity and CTGF expression are necessary and/or sufficient to produce AF under various pathological conditions that are associated with AF in humans. Nevertheless, these findings do provide some of the mechanistic basis for the clinical benefits of angiotensin receptor blockers or statins in patients with AF. Whether specific Rac1 inhibitors will have similar therapeutic benefits for patients with AF remains to be determined.

Reprint requests and correspondence: Dr. James K. Liao, Brigham & Women’s Hospital, 65 Landsdowne Street, Room 275, Cambridge, Massachusetts 02139. E-mail: jliao@rics.bwh.harvard.edu.

REFERENCES


Key Words: atrial fibrillation • fibrosis • Rac1 • connective tissue growth factor • connexin.