Acute right ventricular (RV) failure is a frequent and serious clinical challenge in the intensive care unit. It is usually seen as a consequence of left ventricular failure, pulmonary embolism, pulmonary hypertension, sepsis, acute lung injury or after cardiothoracic surgery. The presence of acute RV failure not only carries substantial morbidity and mortality, but also complicates the use of commonly used treatment strategies in critically ill patients. In contrast to the left ventricle, the RV remains relatively understudied, and investigations of the treatment of isolated RV failure are rare and usually limited to nonrandomized observations. We searched PubMed for papers in the English language by using the search words right ventricle, right ventricular failure, pulmonary hypertension, sepsis, shock, acute lung injury, cardiothoracic surgery, mechanical ventilation, vasopressors, inotropes, and pulmonary vasodilators. These were used in various combinations. We read the abstracts of the relevant titles to confirm their relevance, and the full papers were then extracted. References from extracted papers were checked for any additional relevant papers. This review summarizes the general measures, ventilation strategies, vasoactive substances, and surgical as well as mechanical approaches that are currently used or actively investigated in the treatment of the acutely failing RV.

Etiology and Pathophysiology of Acute RVF

RVF results from any structural or functional process decreasing the ability of the RV to pump blood into the pulmonary circulation. Causes include alterations in preload and diastolic filling, decreases in inotropy, and increases in afterload (Table 1). RV pre-load and diastolic filling affect myocardial fiber length and contractility via the Frank-Starling mechanism, and both increases as well as decreases in pre-load may negatively affect RV function (3). The most common etiologies of RVF in the ICU are left ventricular (LV) failure, RV ischemia, acute pulmonary embolism, pulmonary hypertension (PH), sepsis, acute lung injury, cardiac tamponade, and post-cardiothoracic surgery states. Arrhythmias and pericardial, congenital, and/or valvular heart disease may also contribute (3). Acute RVF is also observed during acute chest syndrome in patients with sickle cell disease (6). In the majority of these conditions, RV dysfunction prognosticates worse outcomes (5–8). The pathophysiology of acute RVF in critically ill patients is...
RV function and indexes of tissue oxygenation. In addition to hemodynamic information in acute RVF, particularly when it comes in acute lung injury (21), they provide crucial response in the ICU. Although PACs do not affect outcome of the ICU treatment, transesophageal echocardiography remain the most reliable methods to diagnose RVF and evaluate the treatment response in the ICU. Although PACs do not affect outcomes in acute lung injury (21), they provide crucial hemodynamic information in acute RVF, particularly when used in combination with echocardiographic parameters of RV function and indexes of tissue oxygenation. In addition to directly measuring pulmonary artery pressure (PAP) and pulmonary capillary wedge pressure, PACs allow measurement and/or calculation of additional parameters like right atrial pressure (RAP), cardiac output (CO), mixed venous oxygen saturation, pulmonary vascular resistance (PVR), and RV stroke work index (Table 2) (22–27). PACs also allow evaluation of the response to pharmacologic therapies and drug titration to specific end points. Importantly, a decrease in PAP may reflect decreasing right ventricular ejection fraction (RVEF) and worsening RVF (28). Although a chronically hypertrophied RV usually tolerates a significantly elevated PAP, a RV without pre-existing hypertrophy will not be able to generate a systolic PAP >50 to 60 mm Hg.

The critical role of bedside echocardiography, especially when combined with specific markers of RV dysfunction, such as tricuspid annular plane systolic excursion index (29), tissue Doppler (30), and Tei index (31), cannot be overemphasized (Table 2) (3,32).

Whether newer predictors of fluid responsiveness (e.g., variations in pulse pressure, systolic blood pressure, or stroke volume) (33) can be of merit in isolated RVF needs further study. In studies of various forms of shock, these are promising new techniques for patients in sinus rhythm and on mechanical ventilation (33). Mechanical insufflation increases intrathoracic pressures, decreases RV pre-load, and increases RV afterload, resulting in diminished RV and LV stroke volumes. These changes are more pronounced in patients whose RV operates on the steep portion of the Starling curve, making dynamic changes in arterial waveform a sensitive indicator of RV pre-load dependence (33,34). Passive leg raising may better predict fluid responsiveness in patients with arrhythmias and spontaneous respirations (34). Cardiac magnetic resonance imaging is the most sensitive method to assess RV function (1–3,12); however, due to logistical issues, it is rarely used for critically ill patients.

Treatment of Acute RVF

Treatment strategies for acute RVF in the ICU are derived from the pathogenetic entities outlined previously. Major components include volume optimization, RV inotropy enhancement, and RV afterload reduction, the latter being achieved through multiple interventions (Fig. 3). These goals are achieved through careful volume management, vasopressor and/or inotrope therapy, selective pulmonary vasodilators, surgical and/or mechanical interventions, and, if possible, specific measures directed against the underlying etiology (Fig. 4).

General supportive ICU care. Infection prevention measures, thromboembolism and peptic ulcer prophylaxis, early nutritional support, glucose control, and (in stable mechanically ventilated patients) daily interruptions of sedation combined with spontaneous breathing trials should be applied to all patients with acute RVF. The optimal hemoglobin level for patients with acute RVF remains to be optimally studied.
Left ventricular dysfunction Most common cause of right heart failure RV co-involvement in structural or ischemic heart disease or indirect RV dysfunction due to ventricular interdependence, pulmonary venous congestion, and/or arrhythmias

RV ischemia (via negative effects on inotropy and/or relaxation or via arrhythmias) RV infarction Relative RV ischemia secondary to RV pressure or volume overload

Afterload increase (endothelial dysfunction, vasoconstriction, and/or mechanical obstruction) Pulmonary arterial hypertension and secondary forms of PH Hypoxic pulmonary vasoconstriction Post-cardiopulmonary surgery (CABG, corrective surgery for CHD, heart/lung transplantation, pneumonectomy) Pulmonary embolus Pulmonary microthrombi (sepsis and acute lung injury) Pulmonary stenosis/RV outflow tract obstruction Acute chest syndrome in sickle cell disease Mechanical ventilation

Pre-load decrease (via effects on RV fiber length and contractility) Hypovolemia/capillary leak Superior vena cava syndrome Tricuspid stenosis Cardiac tamponade (inhibition of diastolic filling) Mechanical ventilation

Intrinsic myocardial disease Cardiomyopathies Arrhythmogenic RV dysplasia Sepsis (cytokine-induced myocardial depression)

Congenital and valvular heart disease Ebstein’s anomaly Tetralogy of Fallot Transposition of the great arteries Atrial septum defect Anomalous pulmonary venous return Tricuspid regurgitation Pulmonary regurgitation Mitral valve disease

Pericardial disease (via negative effects on diastolic filling) Constrictive pericarditis

Arrhythmias

Table 1 Causes of Acute RV Failure in the Intensive Care Unit

Left ventricular dysfunction	Most common cause of right heart failure	RV co-involvement in structural or ischemic heart disease or indirect RV dysfunction due to ventricular interdependence, pulmonary venous congestion, and/or arrhythmias						
RV ischemia (via negative effects on inotropy and/or relaxation or via arrhythmias)	RV infarction	Relative RV ischemia secondary to RV pressure or volume overload						
Afterload increase (endothelial dysfunction, vasoconstriction, and/or mechanical obstruction)	Pulmonary arterial hypertension and secondary forms of PH	Hypoxic pulmonary vasoconstriction	Post-cardiopulmonary surgery (CABG, corrective surgery for CHD, heart/lung transplantation, pneumonectomy)	Pulmonary embolus	Pulmonary microthrombi (sepsis and acute lung injury)	Pulmonary stenosis/RV outflow tract obstruction	Acute chest syndrome in sickle cell disease	Mechanical ventilation
Pre-load decrease (via effects on RV fiber length and contractility)	Hypovolemia/capillary leak	Superior vena cava syndrome	Tricuspid stenosis	Cardiac tamponade (inhibition of diastolic filling)	Mechanical ventilation			
Intrinsic myocardial disease	Cardiomyopathies	Arrhythmogenic RV dysplasia	Sepsis (cytokine-induced myocardial depression)					
Congenital and valvular heart disease	Ebstein’s anomaly	Tetralogy of Fallot	Transposition of the great arteries	Atrial septum defect	Anomalous pulmonary venous return	Tricuspid regurgitation	Pulmonary regurgitation	Mitral valve disease
Pericardial disease (via negative effects on diastolic filling)	Constrictive pericarditis							

CABG = coronary artery bypass grafting; CHD = congenital heart disease; PH = pulmonary hypertension; RV = right ventricular.

determined. Although ICU patients usually benefit from a conservative transfusion strategy (35), patients with shock or heart failure may require higher hemoglobin levels (36,37). This might be the case for patients with acute RVF as well. Clearly, significant anemia in the setting of decreased tissue oxygenation should be corrected. Sodium restriction (in volume overload states) and daily monitoring of body weight and volume status are indicated.

Treatments that attenuate HPV, optimize volume status, and target arrhythmias. Adequate oxygenation is of utmost importance to avoid afterload increases due to HPV. We therefore aim for oxygen saturations of ≥92%. As RV function is highly volume dependent, a careful balance between optimized pre-load and decreased afterload is essential. If pre-load is too low, RVEF will not be adequate. However, too much pre-load will cause the intraventricular septum to shift leftward, decrease LV output, and cause hypotension through ventricular interdependence, especially in the setting of high intrathoracic pressures or pericardial disease (2,8). Therefore, careful administration of fluid boluses, used in conjunction with noninvasive or invasive assessment of CO, is recommended. Vigorous fluid administration may be detrimental and should be discouraged (2). Diuretics are indicated for volume overload. Due to its potential for greater weight and fluid loss than intravenous diuretics, venovenous ultrafiltration is increasingly used for decompensated left heart failure (38). Whether this represents a feasible option in diuretic-resistant right heart failure needs further study. As the RV is extremely susceptible to alterations in cardiac rhythm and ventricular synchrony (39), restoration of sinus rhythm and/or atrioventricular synchrony makes sense, but few studies have focused on this matter in acute RVF specifically (2,3). Clearly, hemodynamically significant bradycardias or tachyarrhythmias should be corrected. Digoxin marginally improves CO in patients with severe PH in the short term (40). However, due to potential side effects and a narrow therapeutic window, routine use is discouraged (2,12). Beta-blocking agents and angiotensin-converting enzyme inhibitors improve RV hemodynamics in patients with biventricular failure and have theoretical benefits in isolated RVF (41,42), but their role in the latter is poorly studied.

Strategies that avoid negative effects of mechanical ventilation on RV pre-load and afterload. Due to potential adverse hemodynamic effects, mechanical ventilation needs to be administered with caution and expertise. Higher tidal volume (VT) and positive end-expiratory pressure may increase PAP and RAP, worsen tricuspid regurgitation, and increase RV afterload (13). In addition, positive end-expiratory pressure may decrease pre-load by diminishing venous return. Therefore, the lowest VT, plateau pressure, and positive end-expiratory pressure needed to provide adequate ventilation and oxygenation should be used (43,44). Lower VT may also decrease cytokine-induced
endothelial dysfunction (43). However, because permissive hypercapnia can increase PAP and worsen RVF through vasoconstriction, excessive hypercapnia should be avoided (12,45). Hyperventilation, on the other hand, attenuates acidosis-induced vasoconstriction and decreases PAP (46). Hyperventilation can be used to lower PAP acutely, but should not be performed at the expense of a high VT. Because increases in respiratory rate can cause dynamic hyperinflation and increased intrathoracic pressures, airway pressures and flow-time loops should be watched closely. Prone ventilation, although not affecting mortality in acute lung injury, may unload the RV through effects on airway pressure and improved alveolar ventilation (47). The effects of high-frequency oscillatory ventilation on RV function are poorly defined, although decreases in CO are described (48,49). Although transient improvements in oxygenation may also be achieved with recruitment maneuvers, these may cause decreased venous return and hypotension (50) and should therefore only be used with extreme caution when significant hypoxemia is present.

Strategies that improve RVEF, increase RV perfusion pressure, and minimize tachyarrhythmias and afterload. Inotropes improve cardiac contractility and CO by increasing cyclic adenosine monophosphate. Vasopressors increase RV perfusion pressure, thereby attenuating subendocardial ischemia. All inotropes concomitantly target the left ventricle (a desired effect in LV failure–induced RVF).

Dobutamine, the inotrope traditionally used in cardiac pump failure, works through β1-receptor–mediated increases in myocardial contractility. Concomitant β2 stimulation induces vasodilation and decreases afterload. In acute PH, low-dose dobutamine (2 to 5 μg/kg/min) increases CO and decreases PVR, whereas higher doses (5 to 10 μg/kg/min) only induce tachycardia and increase myocardial oxygen consumption without further improvements in PAP (12,51,52). In an animal model of acute RVF, dobutamine was superior to norepinephrine in improving RV function, likely due to superior inotropic properties and the absence of peripheral vasoconstriction (52). In acute and
Table 2 Overview of Serum Markers, Hemodynamic Parameters, and Echocardiographic Variables Used in the Diagnosis of Acute RV Failure in the Intensive Care Unit

<table>
<thead>
<tr>
<th>Marker</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP, NT-proBNP, troponin</td>
<td>Increase in LV dysfunction, renal failure, sepsis, but significant RV dysfunction less likely if values normal</td>
</tr>
<tr>
<td>Sodium</td>
<td>≤136 mmol/l predicts RVF and increased risk of death in PAH patients (18)</td>
</tr>
<tr>
<td>Creatinine</td>
<td>Predicts survival in PAH patients with acute RVF; decreased levels associated with increased mortality (14)</td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>Predicts survival in PAH patients with acute RVF; increased levels (4 mg/dl vs. 1.2 mg/dl) associated with increased mortality (14)</td>
</tr>
<tr>
<td>Transaminases</td>
<td>Increase reflects hepatic congestion and/or hypoperfusion due to compromised LV function and forward failure</td>
</tr>
<tr>
<td>Right atrial pressure, cardiac index</td>
<td>Stress responsive, transforming growth factor-beta–related myocardial cytokine</td>
</tr>
<tr>
<td>PVR</td>
<td>Right atrial pressure >15 mm Hg, cardiac index ≤2 l/min/m² indicates transplantation referral in PAH (22)</td>
</tr>
<tr>
<td>Right ventricular stroke work index</td>
<td>Prognosticates RVF after LVAD placement and transplantation-free survival in dilated cardiomyopathy (25,26)</td>
</tr>
<tr>
<td>Pulmonary artery impedance</td>
<td>Evaluates and integrates PVR and pulmonary artery elastance, flow, pulsatile pressure, and wave reflection (27)</td>
</tr>
<tr>
<td>RVEF, RA and RV volume, tricuspid regurgitation, ventricular septal shift, pericardial effusion</td>
<td>Established and readily available markers of RV dysfunction (3)</td>
</tr>
<tr>
<td>Right ventricular systolic pressure</td>
<td>Calculated from tricuspid regurgitant jet and RAP; cannot be obtained if no regurgitant jet identified</td>
</tr>
<tr>
<td>TAPSE, tissue Doppler, Tei index</td>
<td>More specific and less pre-load–dependent than traditional echocardiographic markers (29–31)</td>
</tr>
</tbody>
</table>

For a more detailed description of assessment of RV function, please see Haddad et al. (3). Several of the listed PAC- and echocardiography-derived parameters, as well as additional advanced measurements, can be determined by cardiac magnetic resonance imaging.

BNP = B-type natriuretic peptide; CTEPH = chronic thromboembolic pulmonary hypertension; LV = left ventricular; LVAD = left ventricular assist device; NT-proBNP = N-terminal pro-B-type natriuretic peptide; PAC = pulmonary artery catheter; PAH = pulmonary arterial hypertension; PAP = pulmonary artery pressure; PE = pulmonary embolism; PH = pulmonary hypertension; PVR = pulmonary vascular resistance; RA = right atrial; RV = right ventricular; RVEF = right ventricular ejection fraction; TAPSE = tricuspid annular plane systolic excursion.

chronic PH, the combination of dobutamine and inhaled nitric oxide (iNO) improved CO, decreased PVR, and increased the PaO2/FiO2 ratio (51,53). However, dobutamine may cause hypotension through peripheral B2 stimulation, sometimes requiring the addition of a peripheral vasoconstrictor (e.g., norepinephrine) (12).

Milrinone, a selective phosphodiesterase (PDE)-3 inhibitor, also exerts inotropic and vasodilatory properties. Although decreasing PVR and increasing RVEF in acute and chronic PH, use is limited by systemic vasodilation and hypotension (54). Like dobutamine, milrinone can be combined with iNO to augment pulmonary vasodilation while minimizing hypotension and tachyarrhythmias (55). Inhaled milrinone minimizes hypotension but maintains beneficial effects on PVR and RVEF (56) and even attenuates pulmonary endothelial dysfunction (57). However, due to relatively selective PDE-5 expression in the lung and hypertrophied RV, PDE-5 inhibitors may be more effective and more pulmonary artery (PA) and RV specific than PDE-3 inhibitors (58,59).

Norepinephrine increases inotropy through β1 agonism. Concomitant stimulation of α1-receptors increases RV perfusion pressure and CO, as seen in a model of acute pulmonary embolism–induced RVF (60). Concerns about increases in PVR and PAP exist, but were not observed in that particular study. Norepinephrine may therefore be beneficial in hypotensive and tachycardic patients not tolerating dobutamine, but the latter remains the preferred inotrope for PH and/or acute RVF without significant hypotension (12,52).

Levosimendan sensitizes cardiac troponin C to the effects of intracellular calcium, thereby increasing contractility without increasing oxygen consumption. Levosimendan also has global vasodilatory and anti-ischemic properties that are mediated by activation of adenosine triphosphatesensitive potassium channels in mitochondria of vascular smooth muscle cells (61) and by endothelin-1 inhibition (62). The drug increases CO, decreases PVR, and improves regional perfusion, together with a protective effect against endothelial dysfunction by inhibiting expression of soluble adhesion molecules (63). Levosimendan attenuates injury–induced RV and LV dysfunction and increases regional blood flow and global oxygen transport (64). Although sharing the vasodilatory effects of dobutamine and milrinone, it seems to have more specific pulmonary vasodilatory properties. Animal studies of RVF demonstrated decreased

afterload and increased RV contractility with levosimendan superior to those of dobutamine (65,66). However, use can be limited by hypotension and arrhythmias (especially with bolus dosing) (67), and further studies in acute RVF are needed before its use can be recommended. Levosimendan is currently approved for use in Europe, but not in the U.S. Strategies that decrease RV afterload by attenuating cytokine production, endothelial dysfunction, HPV, and microthrombi and that may directly improve RVEF. Because the RV poorly tolerates afterload increases and because PH is a common cause of RVF, pulmonary vasodilators represent cornerstones of RVF treatment. All systemically administered pulmonary vasodilators can cause hypotension and need to be initiated cautiously.

iNO mediates pulmonary vasodilation by increasing cyclic guanosine monophosphate. Rapid inactivation by hemoglobin in the pulmonary capillaries prevents systemic vasodilation. Effects are limited to ventilated areas of the lung, therefore attenuating HPV, decreasing PAP and PVR, and improving oxygenation without increasing intrapulmonary shunt fraction (unlike systemically administered pulmonary vasodilators, which may aggravate hypoxemia in patients with lung disease) (68,69). In addition, iNO decreases inflammatory cytokine production (12,70,71). In 26 ICU patients with acute RVF, 14 patients experienced significant increases in CO and oxygenation as well as decreases in PVR with iNO (35 ppm) (72). iNO use for PH and/or RVF in patients undergoing orthotropic heart or lung transplantation was associated with lower mortality compared with its use in cardiac surgery or medical patients with hypoxemia (73). Improvements in PVR and RV dysfunction were confirmed in another study of heart transplant recipients (74) and in patients with PH after mitral valve replacement (75). Use of iNO is limited by potential methemoglobinemia, production of reactive nitrogen species, and rebound PH after rapid discontinuation (12,70,76). iNO may be of particular benefit when combined with inodilators (dobutamine or milrinone) (77).

Prostacyclins activate cyclic adenosine monophosphate, resulting in pulmonary and systemic vasodilation and inhibition of platelet aggregation. Although improving end points in pulmonary arterial hypertension (PAH) (78), prospective data on critically ill patients with acute RVF are
sparse. The short half-life (3 to 6 min) and its potent effects make epoprostenol the preferred prostacyclin in the ICU. Initiated at 1 to 2 ng/kg/min, the drug is increased by 0.5 to 1 ng/kg/min every 15 to 30 min. A more cautious approach is often warranted in critically ill patients with significant comorbidities, hypoxemia, and/or labile hemodynamics. Epoprostenol decreases PAP and PVR and increases CO, but its use is limited by dose-dependent side effects (e.g., hypotension, gastrointestinal symptoms, headaches) (79). It should be avoided in respiratory failure, shock, and LV dysfunction. Similar to iNO, abrupt discontinuation may lead to rebound PH and even death (79,80). Nebulized or inhaled prostacyclins forgo systemic side effects, representing an attractive alternative to iNO. No special equipment is required for administration or toxicity monitoring. In heart transplant and lung transplant recipients with PH, refractory hypoxemia, and RV dysfunction, inhaled prostacyclin decreased PAP and CVP and improved cardiac index and mixed venous oxygen saturation similar to iNO (81). Inhaled iloprost for RVF is supported by experimental (82) and clinical data. Iloprost improves PH and RV function in patients undergoing mitral valve surgery, cardiopulmonary bypass, or heart transplantation (83–85) and may be more potent than iNO (86). Treprostinil decreases PAP and PVR (87), but its use in the ICU is limited by a longer half-life than that of epoprostenol. In unstable patients, intravenous or inhalational administration is preferred over the subcutaneous route because the latter may be limited by unpredictable absorption. Inhaled treprostinil (15 or 30 μg) additively decreased PVR and PAP and increased CO when added to sildenafil in a recent open-label trial in PH patients (88).

Endothelin receptor antagonists block endothelin-A and -B receptors in vascular smooth muscle and endothelial cells, attenuating endothelin’s vasoconstrictive, proliferative, and proinflammatory effects (78). Although increasing CO and decreasing PAP in PH patients, endothelin receptor antagonist use in the ICU is limited by relatively long half-lives (5 h for bosentan) and potential hepatotoxicity (78,89), the latter occurring less frequently with selective endothelin-A receptor antagonists (90).

PDE-5 inhibitors block degradation of cyclic guanosine monophosphate. They decrease PAP and increase CO in both acute and chronic PH and may be particularly beneficial for HPV (58,70,91,92). In isolated PA rings, sildenafil, vardenafil, and tadalafil caused dose-dependent PA relaxation and inhibited phenylephrine-induced PA contraction, but only tadalafil inhibited HPV and decreased hypoxia-induced up-regulation of proinflammatory cytokines (93). Few studies investigated PDE-5 inhibitors in ICU patients. In 8 patients undergoing mitral valve repair or LV assist device (LVAD) placement, sildenafil decreased PAP and PVR and facilitated weaning of inhaled and intravenous pulmonary vasodilators while only minimally decreasing systemic blood pressure (94). Sildenafil and zaprinast may act synergistically with iNO (92,95,96) or iloprost (97) and decrease rebound PH after iNO withdrawal (98). In LVAD patients, sildenafil facilitated weaning from iNO and inotropes and provided additional decreases in PAP (99). Sildenafil or its analogues decrease PVR, maintain systemic vascular resistance, and improve myocardial perfusion after coronary artery bypass grafting (100,101). Sildenafil also has unique lusitropic and/or ino-
tropic effects in the hypertrophied RV (102), the latter being exerted through PDE-3 inhibition (milrinone-like effect) (59). Furthermore, sildenafil decreases RV mass in PAH patients (102,103). The drug also improves pulmonary hemodynamics and exercise capacity in patients with systolic LV dysfunction (104). Hemodynamic effects of sildenafil occur after 15 to 30 min, with peak effects after 30 to 60 min, and a half-life of 4 h. An association between sildenafil and severe thrombocytopenia was recently reported in a patient with advanced PH (105).

Surgical and interventional therapies. These are indicated for patients with potentially reversible RVF unresponsive to or intolerant of medical therapy or for those with disease progression despite maximal medical therapy. Surgical or percutaneous correction is also used in RVF due to valvular or congenital heart disease. Pre-operative optimization of filling pressures is crucial, and periprocedural inotropic support may be necessary. All interventions should be performed before irreversible end-organ injury develops. Furthermore, surgical or mechanical support is unlikely to benefit those with advanced RV dysfunction and/or massively elevated PVR. For example, pulmonary endarterectomy for chronic thromboembolic PH is not recommended for patients with a pre-operative PVR >1,000 to 1,200 dynes·s·cm⁻² (22). Balloon atrial septostomy (BAS) is contraindicated in severe RVF and should not be offered to patients with RAP >20 mm Hg, significant hypoxemia (<90% on room air), and/or PVR index ≥4,400 dynes·s·cm⁻²/m² (12,22,106–109). Caution is indicated when repair of an atrial septal defect is planned in the setting of RV dysfunction (24). PVR >1,200 dynes·s·cm⁻² has traditionally been accepted as a contraindication for surgical closure. However, pre-operative pulmonary vasodilator therapy may sufficiently improve hemodynamics to allow for surgical correction (110).

In RVF due to chronic thromboembolic PH, pulmonary thrombendarterectomy improves New York Heart Association functional class, exercise tolerance, and survival (22,111). The best outcomes are achieved in patients with proximal angiographic PA obstruction and absent or min-
imal small vessel disease and if the post-operative PVR can be decreased to $< 500 \text{ dynes} \cdot \text{s} \cdot \text{cm}^{-2}$ (111). Surgical embolectomy is used for acute massive pulmonary embolism when thrombolysis fails or is contraindicated (112). Percutaneous mechanical approaches with or without intrapulmonary thrombolytics can be used in this setting, but comparisons of this approach with medical or surgical thrombolysis are sparse (112).

BAS represents a surgical right-to-left-shunt used to “unload” the RV. The associated decrease in oxygenation is outweighed by increased oxygen delivery and mediated by increased CO (107,113). BAS is used as a bridge to lung transplantation or as a palliative measure in refractory PH, but is contraindicated with concomitant LV failure (22). Spontaneous decreases in orifice size necessitating repeat BAS are not uncommon (113).

Mechanical circulatory support is usually used as a bridge to heart, lung, or heart-lung transplantation. LVADs can be used to treat RVF due to LV failure. LVADs lower pre-heart transplantation PAP, which may improve long-term post-transplantation survival (114,115). However, because LVADs may potentially worsen pre-existing or even result in new-onset RVF (due to changes in RV geometry and flow/pressure dynamics after LV unloading), their use needs to be evaluated on a case-by-case basis (4,116,117). Recent data indicate improved outcomes with continuous-flow LVADs used in a subgroup of patients with concomitant RVF (118). Biventricular VADs may be used if concomitant RV dysfunction is present. Right VADs may be indicated for isolated RVF. As with many surgical procedures, timing is of crucial importance, and VADs should be placed in patients with cardiogenic shock or progressive hemodynamic deterioration despite inotropic therapy before irreversible end-organ failure develops (119). However, isolated right VADs may be insufficient or even deleterious in cases of increased afterload, and extracorporeal membrane oxygenation may be more effective in unloading the RV (120). Extracorporeal membrane oxygenation may be considered for patients with potentially reversible RVF due to severe hypoxemic respiratory failure and/or PH in whom conventional support is failing (121), but randomized, controlled trials are needed.

Heart, lung, or combined heart-lung transplantation is the last resort for end-stage RVF. In patients with PAH, RVF (RAP $> 15 \text{ mm Hg}$ and/or cardiac index $< 2.0 \text{ l/min/m}^2$) indicates poor prognosis and warrants transplantation referral (22). However, due to the resilient nature of the RV, even patients with severe RVF due to PAH can be considered for isolated lung transplantation with successful outcomes (65% to 75% 1-year-survival rate) (2,122).

Conclusions and Future Directions

The RV, although commonly affected in multiple conditions treated in the ICU, remains understudied and much less well understood than the left ventricle. Investigations of the treatment of isolated RVF are rare and limited to nonrandomized observations. In addition to specific therapies directed against the underlying cause of RVF, supportive measures and judicious volume management, and the use of selective pulmonary vasodilators in conjunction with inotropes seem most promising. The combination of iNO with dobutamine is best supported by current evidence, with evolving data supporting the use of inhaled prostacyclins. PDE-5 inhibitors seem to have selective actions on the RV. Mechanical or surgical interventions are used as primary treatment for distinct conditions or as rescue therapy.

Future directions should include therapies specifically targeting the diseased RV. Examples include metabolic modulators aimed at reversing mitochondrial dysfunction (123). Stem cells are being investigated in ischemic and PAH-related RVF (4,124–126). Tyrosine kinase inhibitors show promise in severe PAH with RVF (127). Future research should consider sex-based differences in RV function. Multiple studies demonstrate female protection in acute and chronic forms of left ventricular injury (128,129). Recent data indicate a similar pattern with regard to right ventricular function (130). This is of interest as healthy, cardiovascular disease-free women have a higher RV EF than their male counterparts (131). A better understanding of the molecular mechanisms protecting the female RV in health and disease may therefore allow future therapeutic interventions that ultimately benefit patients from either sex.

Acknowledgments

The authors wish to thank Drs. Brent Weil, Jeremy Herrmann, Aaron Abarbanell, and Irina Petrache for critical review of the manuscript.

Reprint requests and correspondence: Dr. Daniel R. Meldrum, Clarian Cardiovascular Surgery and Indiana University School of Medicine, 635 Barnhill Drive, MS 2017, Indianapolis, Indiana 46202. E-mail: dmeldrum@iupui.edu.

REFERENCES

1444 Lahm et al.
TREATMENT OF ACUTE RIGHT HEART FAILURE

Treatment of Acute Right Heart Failure

Lahn et al.

Treatmen...
116. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 2008;51:2163–72.

Key Words: acute lung injury • inotropes • pulmonary hypertension • sepsis • shock • vasodilators • vasopressors.