Suppression of Re-Entrant and Multifocal Ventricular Fibrillation by the Late Sodium Current Blocker Ranolazine

Norishige Morita, MD,* Jong Hwan Lee, MD, PhD,† Yuanfang Xie, PhD,* Ali Sovari, MD,* Zhilin Qu, PhD,* James N. Weiss, MD,* Hrayr S. Karagueuzian, PhD*

Los Angeles, California; and Seoul, South Korea

Objectives

The purpose of this study was to test the hypothesis that the late Na current blocker ranolazine suppresses re-entrant and multifocal ventricular fibrillation (VF).

Background

VF can be caused by either re-entrant or focal mechanism.

Methods

Simultaneous voltage and intracellular Ca$^{2+}$ optical mapping of the left ventricular epicardial surface along with microelectrode recordings was performed in 24 isolated-perfused aged rat hearts. Re-entrant VF was induced by rapid pacing and multifocal VF by exposure to oxidative stress with 0.1 mM hydrogen peroxide (H$_2$O$_2$).

Results

Rapid pacing induced sustained VF in 7 of 8 aged rat hearts, characterized by 2 to 4 broad propagating wavefronts. Ranolazine significantly ($p<0.05$) reduced the maximum slope of action potential duration restitution curve and converted sustained to nonsustained VF lasting 24 ± 8 s in all 7 hearts. Exposure to H$_2$O$_2$ initiated early afterdepolarization (EAD)-mediated triggered activity that led to sustained VF in 8 out of 8 aged hearts. VF was characterized by multiple foci, appearing at an average of 6.8 ± 3.2 every 100 ms, which remained confined to a small area averaging 2.8 ± 0.85 mm2 and became extinct after a mean of 43 ± 16 ms. Ranolazine prevented (when given before H$_2$O$_2$) and suppressed H$_2$O$_2$-mediated EADs by reducing the number of foci, causing VF to terminate in 8 out of 8 hearts. Simulations in 2-dimensional tissue with EAD-mediated multifocal VF showed progressive reduction in the number of foci and VF termination by blocking the late Na current.

Conclusions

Late Na current blockade with ranolazine is effective at suppressing both pacing-induced re-entrant VF and EAD-mediated multifocal VF. (J Am Coll Cardiol 2011;57:366–75) © 2011 by the American College of Cardiology Foundation

Pharmacologic and genetic approaches to treatment of ventricular fibrillation (VF) must take into account its mechanistic complexity. VF can be caused by both re-entrant and focal mechanisms, as well as mixtures of the 2. Rapid pacing-induced VF generally is attributed to re-entrant mechanisms, resulting from either multiple wavelets (1) or a mother rotor (2), depending on experimental conditions (3). However, drugs and genetic defects that reduce repolarization reserve (prolong repolarization) and alter intracellular Ca$^{2+}$ (Ca$^{2+}$) cycling promote polymorphic ventricular arrhythmias degenerating to VF, in which focal mechanisms are involved in VF initiation and maintenance. For example, local application of aconitine, which impairs Na current inactivation, induces a form of VF that is maintained by focal activity originating from the site of aconitine application (4,5). Multifocal VF also can be induced by oxidative stress with hydrogen peroxide (H$_2$O$_2$), which is driven by early afterdepolarization (EAD)-mediated triggered activity generating multiple short-lived foci continuously shifting in location (6,7).

Ranolazine, which preferentially blocks the late Na current (I$_{Na-L}$) (8,9), is a clinically useful antianginal drug that has been shown to exert antiarrhythmic actions as well (10). In this respect, ranolazine is shown to reduce the dispersion of ventricular action potential duration (APD) (11–13), an effect

From the *Translational Arrhythmia Research Section, UCLA Cardiovascular Research Laboratory and the Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California; and the †Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. This study was supported by National Institutes of Health/National Heart, Lung, and Blood Institute grants P01 HL78931 and R01 HL103662. Dr. Morita received American Heart Association Western States Affiliate Fellowship Award 0723211Y. Dr. Lee is supported by Samsung Medical Center Research Award, Seoul, South Korea. Dr. Xie received 09POST2110079. Dr. Karagueuzian received Grant-in Aid 0555057Y. Drs. Karagueuzian and Weiss are supported by the Laubisch Endowment. Dr. Weiss is supported by the Kawata Endowment. Dr. Karagueuzian received a research grant from Gilead Sciences, Inc., Palo Alto, California. Drs. Morita and Lee contributed equally to this work.

Manuscript received April 15, 2010; revised manuscript received July 6, 2010, accepted July 17, 2010.
that may account for the drug’s demonstrated efficacy to increase VF threshold and decrease ventricular defibrillation threshold of re-entrant VF. (14) Ranolazine also has been shown to suppress EADs and triggered activity in isolated cardiac myocytes exposed to H2O2 (8,15); however, its effects on the initiation and maintenance of EAD-mediated multifocal oxidative VF in intact hearts have not been evaluated. H2O2 has pleiotropic effects, including direct effects on ion channel and transporter proteins and indirect effects mediated by activating Ca-calmodulin kinase II signaling pathways (16–18), which enhance the late Na current, promoting EADs and triggered activity (8,15,19). The aim of this study was to compare the effects of ranolazine on pacing induced re-entrant VF and on H2O2-induced multifocal VF.

Methods

The research protocol was approved by the Institutional Animal Care and Use Committee and followed the guidelines of American Heart Association. Langendorff setting. We used male Fisher344 rats age 24 to 26 months (n = 24) purchased from the National Institute on Ageing, Bethesda, Maryland. The hearts of the anesthetized rats were removed and the ascending aorta was cannulated for retrograde perfusion with warm (36.5 ± 0.50°C) oxygenated Tyrode’s solution, as described previously (6,20).

Optical mapping. The hearts were stained with RH237 for simultaneous dual voltage and Cai transient decay rate constant, τ, was determined by a monoexponential fit during the relaxation before and after ranolazine (6). Cytochalasin D (5 μM) was added to the perfusate to inhibit motion (6). Single-cell action potentials were recorded with glass microelectrodes from the base of the left ventricle (LV) epicardium, the site of the focal activity during the onset of VT as determined by optical mapping (6). An epicardial wavefront was considered to be focal when it arose from within the mapped region (i.e., did not propagate into the mapped region from the outside) and was surrounded with nonexcited tissue. We previously showed that after extensive endomyocardial and midmyocardial cryoablation, the epicardial surface cells generate focal activity independent of breakthrough excitation from deeper cells (6).

Dynamic APD restitution. Epicardial APD was measured at 90% and 50% repolarization from multiple epicardial cells (3 to 5 cells) recorded with microelectrodes from base mid and apical regions in 8 hearts before and after ranolazine. APD restitution curves were determined using a dynamic pacing protocol, as described previously (6,20).

Pharmacological interventions. The isolated hearts first were perfused with normal Tyrode’s solution, and baseline pacing-induced arrhythmias were recorded and imaged. Then, the effect of ranolazine (10 μM) on inducible VF was evaluated 20 min after perfusion (n = 8). When the VF lasted longer than 3 min, it was defibrillated by electrical shock. In a separate series of experiments, the effect of ranolazine on H2O2 (0.1 mM)-initiated VF was evaluated. This involved 2 protocols. The purpose of the first protocol was to determine the efficacy of ranolazine to suppress the VF after it is initiated in the continuous presence of H2O2 (n = 8). The purpose of the second protocol was to test the efficacy of ranolazine to prevent the emergence of VF when administered 20 min before H2O2 (0.1 mM, n = 8).

2-dimensional computer simulation studies. Computer simulations were performed in a 2-dimensional (2D) tissue model with the membrane voltage described by the following partial differential equation:

\[
\frac{\partial V}{\partial t} = -I_{\text{ion}}/C_m + D \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \right)
\]

where \(C_m\) is the membrane capacitance set at 1μF/cm², \(I_{\text{ion}}\) is the total membrane ionic currents, and \(D\) is the diffusion coefficient and was set as 0.0005 cm²/ms with no-flux boundary conditions. \(I_{\text{stim}}\) is the stimulation current (a square pulse with a strength 40 μF/cm² and duration of 1 ms). We used the ventricular myocyte action potential model that we developed recently (21). The model was modified to generate EADs with detailed changes as described previously (7). To model the effects of H2O2, in addition to increasing the maximum conductance of \(I_{\text{Cal}}\) by 2.6 and decreasing the maximum conductance of the rapid delayed rectified potassium current (\(I_{\text{Ko}}\)), by 20%, we also halved the rate of calcium uptake by the sarcoplasmic reticulum and added \(I_{\text{Na-L}}\) that was equivalent to 0.1% of the peak \(I_{\text{Na-L}}\) amplitude (7). The effects of ranolazine were simulated by decreasing the late \(I_{\text{Na-L}}\). We first paced a single myocyte with a square pulse (\(I_{\text{stim}}\) described above) to the steady-state and used it as the initial condition for the myocytes in the whole tissue to save computer time. The 2D tissue then was paced from the corner with 1 beat to allow EAD-mediated focal VF to develop. After 1 min, the dynamics of the focal VF-like state were analyzed in the presence and absence of \(I_{\text{Na-L}}\) to study ranolazine effect. Numerically, Equation 1 was discretized with \(\Delta x = \Delta y = 0.015\) cm and was integrated with a forward Euler method with an adaptive time step varying from 0.01 to 0.1 ms.
Statistical analyses. Significant differences in the incidence of VF (dichotomous comparisons) were determined using the Fisher exact test or McNemar test whenever appropriate. A likelihood ratio test was used to determine the significance of site-specific origination of focal activity in the LV. Rate-dependent changes in the Ca^{2+} decline rate constant (monoeponential fit), APD, resting potential, maximum rate of phase-zero action potential depolarization ($\mathrm{dV/Dr}_{\text{max}}$), and maximum slope of APD restitution curves were determined using 1-way repeated measures analyses of variance (ANOVA). Our 2-way repeated measures ANOVA between groups indicated linear trends between groups and did not show interaction effect. Differences among individual means were verified subsequently by Newman-Keuls post hoc tests. $p \leq 0.05$ was considered significant. All data are presented as mean ± SD.

Results

Pacing-induced VF. When VF was induced by rapid pacing (Fig. 1A), activation mapping revealed 2 to 4 irregularly wandering wavelets that propagated freely over a relatively large area on the epicardium, often colliding with other wavefronts (Fig. 1B) and initiating transient re-entry (Online Video 1). VF persisted (for >3 min) unless electrically cardioverted (Fig. 1A). The activation patterns were comparable with those previously reported in pacing-induced multiple wavelet VF in isolated swine (22), canine (23), and human ventricles (24). The effects of ranolazine on the dynamics of pacing-induced VF were examined in 8 hearts. Ranolazine did not prevent the induction of VF by rapid pacing (7 of 8 at baseline vs. 6 of 8 after ranolazine, $p = \text{NS}$) (Fig. 1C). However, after ranolazine, VF terminated spontaneously in all 6 hearts after a mean of 12 ± 6 s (Fig. 1C). Activation maps showed that ranolazine caused progressive reduction in the number of wavelets until only a single wavefront remained, followed by quiescence and resumption of sinus rhythm (Fig. 1E). Ranolazine significantly reduced the maximum slope of epicardial APD restitution curve, from 1.3 ± 0.5 to 0.85 ± 0.3 (18 sites in 6 hearts) ($p < 0.05$).
Initiation and maintenance of VF by \(\text{H}_2\text{O}_2 \)-mediated EADs and triggered activity. INITIATION. Figure 2A illustrates the onset of VF in a heart exposed to 0.1 mM \(\text{H}_2\text{O}_2 \). Focal VT arose suddenly during normal sinus rhythm (mean CL of 395 ± 182 ms), and within 1 s degenerated to VF. The mean CL of VT was 78 ± 20 ms and that of VF was 60 ± 18 ms (n = 8). Focal VT arose preferentially (66% p < 0.05, likelihood ratio test) from the base of the LV epicardium (Fig. 2B) in 12 of 18 episodes in 8 hearts, consistent with our previous study (6). In the remaining 6 episodes (34%), VT originated from the outside of the mapped region and swept across a mapped region from either the apex (4 episodes) or the left lateral LV (2 episodes) as a single wavefront. VF was sustained until cardioverted electrically. To obtain insight into the mechanism of VT preceding VF, after cardioversion of a VF episode, continuous action potential recordings were made with a roving glass microelectrode from the base of the LV before the next episode of spontaneous VT or VF. The LV base was selected because of frequent origination of the focal VT (p < 0.05) from this site. Figure 2D shows the onset of a spontaneous VT episode initiated by an EAD-mediated triggered activity that causes focal VT, which then degenerated to VF, consistent with our previous study (6). The EAD-mediated triggered activity coincided in time with the isoelectric interval of the simultaneously recorded pseudo-electrocardiography (Fig. 2D), suggesting the absence of electrical activity elsewhere in the heart. Furthermore, the U-shaped smooth depolarization of the EAD preceding the QRS complex of the VT by a mean of 7 ± 3 ms further suggested that the triggered activity caused the VT.

MAINTENANCE. We mapped wavefront activation patterns between 2 to 30 s after the onset of VF. Wavefront activation patterns differed dramatically from those during pacing-induced VF in the same hearts before \(\text{H}_2\text{O}_2 \). As shown in Figure 2E, VF was maintained by multiple
Epicardial foci, appearing at a mean rate of 6.8 ± 3.2 new foci every 100 ms. These foci were caused by EAD-mediated triggered activity that arose from a membrane potential of 51 ± 8 mV. Unlike the multiple wandering wavelets VF (Fig. 1B), the multiple foci did not propagate freely across the epicardial surface. Instead, they typically remained confined to relatively small islands on the epicardium, with an average surface area of 2.8 ± 0.85 mm² (Online Video 2). From a total of 1,945 epicardial foci analyzed in 6 hearts, the lifespan of a focus, from appearance to extinction, averaged 43 ± 16 ms (Fig. 2E). In 92% of the cases, extinction occurred because the depolarization failed to spread into adjacent, more repolarized, tissue. In only 8% of the cases, extinction of the foci was the result of collisions with other foci arising from adjoining sites <2 mm away.

Effects of ranolazine on H2O2-mediated multifocal VF. Ranolazine (10 μM) perfusion, beginning 5 s after the onset of H2O2-induced VF, terminated VF after a mean of 1.1 ± 0.4 min in 8 hearts (26 episodes) (Figs. 3A and 3B). No subsequent EADs or triggered activity emerged during ranolazine perfusion for up to 1 h. On washout of ranolazine, EADs and triggered beats progressively reemerged in 7 of 8 hearts, culminating in spontaneous VF after a mean washout period of 36 ± 10 min (Fig. 3B). In 8 additional hearts, ranolazine (10 μM) was perfused for 30 min before H2O2. Ranolazine prevented VF in all 8 hearts for up to 1 h of H2O2 exposure (Fig. 3C) (p < 0.01, compared with H2O2 with no ranolazine). On washout of ranolazine in the continued presence of H2O2, however, EADs progressively emerged in 7 of 8 hearts after a mean washout period of 25 ± 8 min leading to VF (Fig. 3D).

To gain insight into the mechanism of VF termination by ranolazine, we analyzed epicardial activation maps. As shown in Figures 4B and 4C, within 1 min, ranolazine caused a significant (p < 0.05) reduction in the number of epicardial foci, from 6.8 ± 3.2 foci to 3.5 ± 1.2 foci. Eventually, only a single focus remained, resulting in a brief (approximately 1 s) period of VT before the resumption of sinus rhythm (Fig. 4B).

Other electrophysiological effects of ranolazine. Ranolazine had no significant effect on the resting membrane potential (measured with an intracellular microelectrode) or action potential duration to 50% and 90% repolarization, either before or after H2O2 (35 ± 7 ms vs. 32 ± 4 ms and 106 ± 5 ms vs. 102 ± 8 ms, respectively; pacing cycle length = 250 ms). Ranolazine also had no effect on the ventricular effective refractory period determined at a pacing cycle length of 250 ms (94 ± 10 ms vs. 97 ± 14 ms). However, ranolazine did cause significant rate-dependent reduction of dV/dtmax, when the pacing CL was reduced from 250 to 130 and 100 ms, both at baseline and after H2O2 consistent with ranolazine’s use-dependent block of the Na current (9,25) (Fig. 5A). Ranolazine had no significant effect on conduction velocity measured from the LV epicardial base to the LV apex at pacing cycle lengths longer than 250 ms (54 ± 8 cm/s vs. 56 ± 10 cm/s). However, at pacing cycle lengths of 250 ms and shorter, ranolazine caused a slight but significant rate-dependent decrease in conduction velocity, as shown in Figure 5B, consistent with its rate-dependent depressant of the fast INa, reflected as reduction in dV/dtmax. Ranolazine had no significant effect on the Ca2+ transient decline rate either before or after H2O2 (Fig. 5C), consistent with a previous study in rat hearts showing a minimal effect of ranolazine on the Ca2+ transient duration (26). However, H2O2 caused significant slowing of the rate constant of Ca2+ decline (84 ± 6 ms vs. 108 ± 10 ms, p < 0.05) (Fig. 5B), but had no significant effect on the maximum slope of the APD90 restitution curve (1.3 ± 0.5 vs. 1.2 ± 0.5), consistent with our previous report (6).

2D simulation of multifocal VF and the effect of ranolazine on VF maintenance. Based on the experimental findings described, we hypothesized that ranolazine suppressed multifocal VF by reducing the number of triggered foci below a critical number required to maintain VF. To test this hypothesis, we simulated 2D cardiac tissue exhibiting multifocal VF, using a realistic cardiac action potential model (21) modified to generate EADs by mimicking the effects of H2O2 on INa-L and other currents (27). INa-L, then was blocked to simulate the effects of ranolazine. As shown in Figures 6A and 6C, the number of foci progressively decreased, such that wavefronts emanating from the foci spread over progressively wider regions, eventually leaving a single wavefront causing transient VT before the tissue became quiescent (Fig. 6A), in agreement with the experimental findings.

Discussion

The major conclusion of this study is that the late Na current blocking drug ranolazine demonstrates efficacy against both pacing-induced re-entrant VF and spontaneous oxidative multifocal VF. The suppression of multifocal VF by ranolazine is associated with a progressive reduction in the number of foci. This finding supports the hypothesis that multifocal VF requires the constant generation of new interacting foci to maintain themselves such that when the rate of production of new foci falls below a critical level, VF terminates. This is analogous to re-entrant VF, in which a critical mass is required to ensure that the rate of formation of new wavelets exceeds the rate of wavelet extinction (22).

Effects of ranolazine of pacing-induced re-entrant VF. The suppressive effect of ranolazine against re-entrant VF is compatible with previous studies demonstrating the drug’s efficacy to reducing dispersion of repolarization (28) and increasing the VF threshold (14). In addition, we found that ranolazine significantly reduced the maximum slope of APD restitution, which potentially contributes to its antiarrhythmic effect by preventing APD restitution-driven wavebreak (29). Although the main target of ranolazine is the late Na current, other nonselective effects on IKr, IKs, and, to a lesser extent, ICaL (27) also are likely to be important in its overall antiarrhythmic effects. Ranolazine did not affect the Ca2+ transient rate and did not reverse...
Figure 3 Suppression and Prevention of EAD-Mediated Triggered Activity and VF by Ranolazine in Hearts Exposed to 0.1 mM H$_2$O$_2$

In all parts, the top recordings are pseudo-ECG and the bottom panels are glass microelectrode recordings. (A) Within 8 min of H$_2$O$_2$ perfusion, EADs emerge that then progressively degenerate to triggered beats, causing VT and VF 15 min after H$_2$O$_2$. (B) Thirteen min after ranolazine (10 μM) perfusion and in the continued presence of H$_2$O$_2$, the VF remains suppressed for the entire 40 min of ranolazine perfusion. However, after ranolazine washout and in the continued presence of H$_2$O$_2$, EADs emerged progressively, causing triggered beats and VF 65 min after washout of the drug. (C) Pre-treatment with ranolazine (10 μM) for 30 min before H$_2$O$_2$ perfusion in a different heart, preventing the formation of EADs and VF during the entire 60 min of ranolazine perfusion. However, on 40 min of ranolazine washout and in the continued presence of H$_2$O$_2$, the EADs emerged progressively, causing VT/VF 40 min after ranolazine washout as shown in D. Abbreviations as in Figures 1 and 2.
H$_2$O$_2$-mediated slowing of the Ca$^{2+}$ decline rate, consistent with a recent study showing a minimal effect of ranolazine on Ca$^{2+}$ transient duration (26). However, consistent with previous studies (9,25) ranolazine caused a rate-dependent decrease in dV/dt$_{max}$ and conduction velocity, particularly at faster rates of activation.

Effects of ranolazine of spontaneous multifocal VF. Previous studies of isolated myocytes have shown that ranolazine has a potent suppressant effect on H$_2$O$_2$-mediated EADs and triggered activity (8). The present study extends these observations to EAD-mediated multifocal VF in intact hearts. Ranolazine progressively reduced the number EAD-mediated triggered foci, eventually terminating the multifocal VF. These findings suggest that the presence of a critical number of foci is necessary to maintain a multifocal VF, the rationale being that EADs and triggered activity are afterpotentials, and therefore their formation is dependent on an obligatory prior excitation. This indicates that if no
new foci seem to generate new foci, the VF can not be sustained, resulting in termination. The results of our 2D simulation corroborate this experimental dynamic scenario of multifocal VF termination. Reduction in the number of foci caused by the suppression of the late I_{Na} led to a progressive reduction of the number of foci resulting in VF termination. The role of wavebreak in the maintenance of H2O2-mediated VF seems to be minimal, because the foci remained confined to small regions (2 to 3 mm²) on the epicardium, with wavefront–wavefront collisions observed in only 4% of cases. There are several possible reasons why the foci remained spatially confined. The spread of foci may have been mediated by phase waves resulting from synchronization of EAD oscillations (7), rather than true propagation. Alternatively, outward propagation from the center of foci may have been decremental as a result of refractoriness of surrounding tissue. After ranolazine reduced the number of foci, regenerative outward propagation from foci was observed more frequently, consistent with the surrounding tissue having had more time to recover excitability.

Study limitations. In surface epicardial maps, an intramural wavefront breaking through the surface may have the appearance of a focus. However, we previously demonstrated that after endocardial and midmyocardial ablation, the epicardial cells have an intrinsic ability to generate H2O2-induced EADs, triggered activity, and VF (6). However, we can not dismiss the potential role of the endocardial Purkinje fiber network in the initiation and maintenance of focal VF (30,31). It could be argued that the observed epicardial focal mechanism may result from micro–re-entry, rather than triggered foci (32). Our single-cell microelectrode recordings from epicardial focal sites showing cellular EAD-mediated triggered activity and our 2D simulation showing EAD-mediated multifocal VF provide further suggestive evidence for a focal triggered activity, rather than a micro–re-entrant mechanism for VF. Although H2O2 is an artificial means of inducing oxidative stress, the 0.1-mM concentration used in this study is considered relevant to pathophysiological levels under conditions such as ischemia–reperfusion (33–35). Furthermore, it must be emphasized that the efficacy of ranolazine needs to be
tested in different animal models of VF to substantiate its broad antifibrillatory efficacy. Finally, ranolazine’s IKr-blocking influence, which conceivably could account for its demonstrated ability to decrease ventricular defibrillation threshold (14) and perhaps re-entrant VF as well, was not tested in our computer model.

Conclusions

To our knowledge, this is the first study to demonstrate that ranolazine has a potent suppressant effect on both re-entrant and multifocal VF at concentrations considered therapeutic in humans (36,37). Our findings support previous studies demonstrating ranolazine’s efficacy against H2O2-mediated EADs and triggered activity in isolated cardiac myocytes (8,15), in isolated tissue (10), as well as ventricular arrhythmias in animal models (14,28,38) and in humans (39). Although H2O2 is an artificial means of inducing oxidative stress, there are many known triggers of oxidative stress in the heart, such as aging (40), heart failure (41), and ischemia–reperfusion (35), which are all conditions associated with increased risk of VF. The effect of ranolazine to reduce reperfusion arrhythmias significantly (42) indicates that the drug could exert a potent antiarrhythmic effect under conditions of oxidative stress (33).

Acknowledgment

The authors thank Pargol Samanianpour, MD, for her help with data analyses.

Reprints requests and correspondence: Dr. Hrayr S. Karagueuzian, Translational Arrhythmia Research Section, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL 1630, Mail Code 176022, Los Angeles, California 90095. E-mail: hkaragueuzian@mednet.ucla.edu.

REFERENCES

Key Words: early afterdepolarization • focal activity • optical mapping • oxidative stress • ranolazine • re-entry • triggered activity • ventricular fibrillation.

APPENDIX

For supplementary videos and their legends, please see the online version of this article.