A Randomized Controlled Phase IIb Trial of Beta₁-Receptor Blockade for Chronic Degenerative Mitral Regurgitation

Mustafa I. Ahmed, MD,* Inmaculada Aban, PhD,† Steven G. Lloyd, MD, PhD,*‡ Himanshu Gupta, MD,*‡ George Howard, DrPH,† Seidu Inusah, MS,† Kalyani Peri, MS,† Jessica Robinson, RN,*, Patty Smith, RN,*, David C. McGiffin, MD,§ Chun G. Schiros, MPS,‖ Thomas Denney, Jr., PhD,‖ Louis J. Dell'Italia, MD*‡

Birmingham and Auburn, Alabama

Objectives
The purpose of the study was to evaluate the effect of long-term β₁-adrenergic receptor (AR) blockade on left ventricular (LV) remodeling and function in patients with chronic, isolated, degenerative mitral regurgitation (MR).

Background
Isolated MR currently has no proven therapy that attenuates LV remodeling or preserves systolic function.

Methods
Thirty-eight asymptomatic subjects with moderate to severe, isolated MR were randomized either to placebo or β₁-AR blockade (Toprol-XL, AstraZeneca, London, United Kingdom) for 2 years. Magnetic resonance imaging with tissue tagging and 3-dimensional analysis was performed at baseline and at 6-month intervals for 2 years. Rate of progression analysis was performed for endpoint variables for primary outcomes: LV end-diastolic volume/body surface area, LV ejection fraction, LV end-diastolic (ED) mass/ED volume ratio, LV ED 3-dimensional radius/wall thickness; LV end-systolic volume/body surface area, LV longitudinal strain rate, and LV early diastolic filling rate.

Results
Baseline LV magnetic resonance imaging or demographic variables did not differ between the 2 groups. Significant treatment effects were found on LV ejection fraction (p = 0.006) and LV early diastolic filling rate (p = 0.001), which decreased over time in untreated patients on an intention-to-treat analysis and remained significant after sensitivity analysis. There were no significant treatment effects found on LV ED or LV end-systolic volumes, LV ED mass/LV ED volume or LV ED 3-dimensional radius/wall thickness, or LV longitudinal strain rate. Over 2 years, 6 patients treated in the placebo group and 2 patients in the β₁-AR blockade group required mitral valve surgery (p = 0.23).

Conclusions
β₁-AR blockade improves LV function over a 2-year follow-up in isolated MR and provides the impetus for a large-scale clinical trial with clinical outcomes. (Molecular Mechanisms of Volume Overload-Aim 1 [SCCOR in Cardiac Dysfunction and Disease]; NCT01052428) (J Am Coll Cardiol 2012;60:833–8) © 2012 by the American College of Cardiology Foundation

Degenerative mitral valve disease, usually related to mitral valve prolapse, is responsible for most cases of isolated mitral regurgitation (MR) in the United States (1). There is no effective medical therapy for isolated MR, and therefore, surgery is recommended in patients with severe MR and symptoms or evidence of progressive left ventricular (LV) dysfunction (2,3). The natural history of MR is progressive LV dysfunction and adverse LV remodeling, eventually leading to heart failure. Initially, LV dilation and augmented stroke volume occur, facilitated by an increase in preload and by ejection into the relatively low-pressure left atrium. These changes are accompanied by increased sympathetic drive early in MR in both animal models (4,5) and humans (6). However, prolonged excessive adrenergic stimulation has a cytotoxic effect on cardiomyocytes (7), resulting in

From the *Department of Medicine and Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama; †Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; ‡Birmingham Veteran Affairs Medical Center, Birmingham, Alabama; §Department of Cardiovascular Surgery, University of Alabama at Birmingham, Birmingham, Alabama; and the ‖Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama. This study was funded by the National Heart, Lung and Blood Institute Specialized Center for Clinically Oriented Research (SCCOR) in Cardiac Dysfunction, National Institutes of Health, Bethesda, Maryland (grant no.: P50HL077100). Drugs and placebos were supplied by AstraZeneca. The authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Manuscript received August 22, 2011; revised manuscript received March 13, 2012, accepted April 16, 2012.
in patients with isolated MR. Therefore, the current random-
surrogate outcome to evaluate the effects of long-term
with tissue tagging and 3-dimensional (3D) analysis as a
alyzed, controlled study used magnetic resonance imaging (MRI)
crease in LV end-diastolic volume (EDV) and end-systolic volume (ESV) and no change
in LV EF (11). However, the beneficial effect of β₁-AR
blockade on LV function in heart failure is achieved after long-term therapy, and there has not been a human trial of
extended β₁-AR blockade on LV remodeling and function in patients with isolated MR. Therefore, the current random-
ized, controlled study used magnetic resonance imaging (MRI)
with tissue tagging and 3-dimensional (3D) analysis as a surrogate outcome to evaluate the effects of long-term β₁-AR
blockade on LV remodeling and function in patients with chronic, isolated MR.

Methods

Study population. Eligible patients had moderate or severe
MR documented by color flow Doppler, LV EF of more
than 55%, LV end-systolic dimension of <40 mm, and
echocardiographic thickening of the mitral valve leaflets and
prolapse. Patients were excluded with New York Heart
Association functional class III or IV symptoms, previous
myocardial infarction, significant coronary artery disease by
exercise testing with myocardial perfusion imaging, signifi-
cant other valvular disease, serum creatinine level of more
than 2.5 mg/dl, and hypertension requiring medical treat-
ment. The study was approved by the University of Alabama
Institutional Review Board, and all subjects gave written
informed consent.

Study protocol. We conducted a randomized, double-
blind study with 2 years of treatment of β₁-AR blockade
with Toprol XL (AstraZeneca, London, United Kingdom)
(range: 25 to 100 mg/day) versus placebo in patients with
moderate to severe MR. Toprol XL was administered with
a starting dose of 12.5 to 25 mg/day and was titrated as
tolerated at 2-week intervals to a maximum of 100 mg/day.
After randomization, patients underwent MRI scanning,
which was repeated at 6, 12, 18, and 24 months after
randomization. MRI also was performed in control volun-
teers (mean age: 52 ± 11 years, range: 35 to 70 years) who
had no prior history of cardiovascular disease and were not
taking any cardiovascular medications.

Cardiac MRI. As previously described (12,13), MRI was
performed on a 1.5-T MRI scanner (Signa GE Healthcare,
Milwaukee, Wisconsin) optimized for cardiac application.
The short axis volumes defined by the contours, excluding
papillary muscles, were summed to calculate LV volume
(12,13). LV volume-time curves were constructed and
differentiated with respect to time to obtain peak diastolic
filling rates (13).

Three-dimensional LV geometric parameters were mea-
sured from surfaces fit to endocardial and epicardial contours
manually traced near end-diastole and end-systole. 3D
wall thickness was computed by measuring the perpendic-
ular distance from a point on the endocardial surface to the
closest point on the epicardial surface.

Tagged MRI scans were acquired with repetition times of
8 ms, echo times of 4.4 ms, and tag spacing of 7 mm. 3D
LV strain was measured from tagged images at end-systole,
which was defined by visual inspection of the image data as
the time frame with maximum contraction (14). Two-
dimensional strain rates were measured using harmonic phase
analysis (15), which measures local myocardial 2-dimensional
strain based on the local spatial frequency of tag lines. Strain
and strain rates were computed at each segment in the
American Heart Association 17-segment model and were
averaged over the mid-ventricular segments.

Statistical analysis. PRIMARY OUTCOME VARIABLES.
Analyses of MRI scans were performed blinded and side by
side in 1 sitting for each patient. MRI outcome variables
were categorized according to the following: 1) LV geom-
etry: LV end-diastolic volume (EDV)/body surface area
(BSA), LV ED mass/LV EDV, 3D LV ED radius/wall
thickness (midwall); 2) LV systolic function: LV EF, LV
ESV/BSA, 2-dimensional LV systolic longitudinal strain
rate; and 3) LV diastolic function: LV peak early filling rate
(EDV/s).

ANALYSIS. The t test (for continuous variables) and Fisher
exact test (for categorical variables) were used to compare
demographic characteristics, clinical characteristics, and
outcome variables at baseline between the 2 groups. Treat-
ment differences in the rate of progression, assessed on an
intention-to-treat basis, was the focus of the comparisons
over time between the treatment groups. Rate of progres-
sion for each outcome was modeled with SAS PROC
MIXED (SAS Institute, Cary, North Carolina) assuming
the best working correlation structure based on the Bayesian
information criterion from the choices of autoregressive lag
1, heterogeneous autoregressive lag 1, compound symmetry,
and heterogeneous compound symmetry. Compound sym-
metry was found to be the best structure for all outcomes
except for LV EDV/BSA, where autoregressive lag 1 was
found to be the best structure. A significant interaction
effect between the linear component of time and the

Abbreviations and Acronyms

AR = adrenergic receptor
BSA = body surface area
CI = confidence interval
3D = 3-dimensional
ED = end-diastolic
EDV = end-diastolic volume
EF = ejection fraction
ESV = end-systolic volume
LV = left ventricular
MR = mitral regurgitation
MRI = magnetic resonance imaging
treatment group was the measure of treatment effect, assessed at $p < 0.05$.

MRI examinations were performed at 6-month intervals over the 2-year study period. To achieve a more accurate representation of a patient's rate of progression over time, the actual time of the MRI relative to randomization that is closest to a 3-month interval (i.e., 0, 3, 6, 9, 12, 15, and so on) was used in the analysis, instead of the target 6-month visit. For example, if a patient was scheduled to have a 12-month MRI but actually underwent an MRI examination 2.5 months late from the target visit, the time associated with the MRI data for this visit was considered to be at 15 months, instead of 12 months.

Results

Demographic data. Demographic data are summarized in Table 1. Thirty-eight patients were enrolled: 19 in the placebo group and 19 in the Toprol group. One patient in the placebo group dropped out soon after the randomization, and 1 patient in the Toprol group died of pulmonary embolus after cosmetic surgery shortly after the 12-month visit. Thus, 36 patients had 2 years of follow-up data. However, these patients were included in the random effects models on an intention-to-treat principle.

Baseline age, sex, race, heart rate, or blood pressure did not differ between groups. Of the 38 MR patients, 10 had holosystolic murmurs, with 5 in treated patients and 5 in untreated patients. No patients had a flail leaflet. No patients had atrial fibrillation, and all patients were New York Heart Association functional class I or II, with 90% and 95% of placebo and treatment groups being in New York Heart Association class I, respectively.

Analyses of outcomes. First- and second-order polynomials for time effects were fitted for all outcome variables, and coefficients associated with the second-order terms were not found to be significant. Therefore, a first-order (linear) time effect model was used. Figures 1, 2, and 3 display the raw data by treatment group for each LV outcome with the fitted lines as well as the fit with 95% confidence bands based on individual confidence intervals for the means at each time point. Table 2 displays the estimates and standard errors for the annual rates of progression (slope \times 12 months) for each group including the p values, which compare the estimates between the 2 groups.

At baseline, MR patients had 35% higher LV EDV/BSA, 50% higher LV ESV/BSA, 33% higher LV stroke volume/BSA, and 18% lower LV ED mass/EDV ratio, whereas LV EF was slightly lower in MR patients versus control subjects (Online Fig. 1, Online Tables 1 to 4).

Sensitivity analyses. Sensitivity analyses were performed to account for a possible effect in the statistical analyses of participants who had undergone mitral valve surgery. These patients are identified (black lines) in Figures 1, 2, and 3. Surgery is performed because it is expected that the patient’s condition will improve. Therefore, it is logical to assume that the data observed after surgery of the patients who underwent mitral valve repair or replacement is better than what it would have been if they did not undergo surgery; hence, the data after surgery were replaced with the worst value for the visit within the treatment group. The conclusions were the same.

Adverse events. Although generally there was a pattern of a higher adverse event or serious adverse event frequency in the placebo group, by design the study was not powered to

Table 1

Baseline Demographic and Clinical Characteristics of Patients with Isolated Mitral Regurgitation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Placebo</th>
<th>Toprol</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>19</td>
<td>19</td>
<td>0.7459</td>
</tr>
<tr>
<td>Female</td>
<td>9 (47%)</td>
<td>11 (58%)</td>
<td>0.2297</td>
</tr>
<tr>
<td>White race</td>
<td>19 (100%)</td>
<td>16 (84%)</td>
<td>0.3101</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>56 ± 9.2</td>
<td>52.9 ± 9.1*</td>
<td>0.3859</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>121 ± 14</td>
<td>125 ± 14</td>
<td>0.8905</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>75 ± 11</td>
<td>75 ± 11</td>
<td>0.8238</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>67 ± 12</td>
<td>66 ± 11</td>
<td>1.0000</td>
</tr>
<tr>
<td>NYHA functional class I</td>
<td>17 (80%)</td>
<td>18 (95%)</td>
<td>0.4139</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MRI variables</th>
<th>Placebo</th>
<th>Toprol</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV EDV/BSA (ml/m²)</td>
<td>92 ± 17</td>
<td>96 ± 20</td>
<td>0.4964</td>
</tr>
<tr>
<td>LV ED mass/LV EDV (g/ml)</td>
<td>0.61 ± 0.13</td>
<td>0.61 ± 0.12</td>
<td>0.9720</td>
</tr>
<tr>
<td>LV ED radius/wall thickness</td>
<td>4.76 ± 0.92</td>
<td>4.69 ± 0.92</td>
<td>0.8001</td>
</tr>
<tr>
<td>LV EF (%)</td>
<td>63 ± 5</td>
<td>62 ± 6</td>
<td>0.7820</td>
</tr>
<tr>
<td>LV ESV/BSA (ml/m²)</td>
<td>34 ± 7</td>
<td>36 ± 8</td>
<td>0.4258</td>
</tr>
<tr>
<td>Peak systolic longitudinal strain rate (%/s)</td>
<td>88 ± 27</td>
<td>83 ± 29</td>
<td>0.5619</td>
</tr>
<tr>
<td>Peak early filling rate (EDV/s)</td>
<td>2.27 ± 0.61</td>
<td>2.12 ± 0.57</td>
<td>0.4139</td>
</tr>
</tbody>
</table>

Values are n (%) or mean ± SD. *Peak early filling rate (milliliters per second) normalized to EDV. BSA = body surface area; EDV = end-diastolic volume; ESV = end-systolic volume; LV = left ventricular; ED = end-diastolic; EF = ejection fraction; MRI = magnetic resonance imaging; NYHA = New York Heart Association.
detect modest differences between groups. Twelve of the 19 patients randomized to placebo and 8 of the 19 patients randomized to Toprol experienced at least 1 adverse event. Seven of the 12 in the placebo group and 3 of the 8 in the Toprol group experienced serious adverse events. A formal test of the hypothesis using the Fisher exact test did not show this difference to be statistically significant (p = 0.33 for adverse event and p = 0.27 for serious adverse event). Six of the 19 patients in the placebo group and only 2 of the 19 in the Toprol group had undergone mitral valve repair or replacement. The Fisher exact test also did not show this difference to be statistically significant (p = 0.23).

Discussion

In this randomized placebo-controlled study, chronic β₁-AR blockade prevented the progressive decline of LV EF, whereas LV EF slope decreased in the placebo group. At randomization, all patients were within standard echocardiographic guidelines, with an LV end-systolic dimension of less than 40 mm and an LV EF of more than 55% in the absence of symptoms. The beneficial effects of β₁-AR
blockade persist on a intention-to-treat basis and with a sensitivity analysis. There is no difference in the rate of progression for systolic wall stress calculated using blood pressure and 3D radius/wall thickness at the base, mid, or distal LV (data not shown). Thus, the tendency for an increase in LV ESV in the placebo group resulting in a decrease in the slope of LV EF may represent a decrease in contractility. In parallel with the effects on LV systolic function, early LV diastolic filling rate demonstrates a decreasing slope in placebo and an increasing slope in treated patients.

No treatment effects were detected for LV remodeling. The discordance between LV remodeling and improved LV systolic function with β1-AR also has been reported in the canine model of isolated MR (8,9). The dog model of isolated MR is marked by loss of extracellular matrix components essential to cardiac geometry (16,17), decrease in protein synthesis (18), and decrease in profibrotic growth factors, including transforming growth factor-β (16). Thus, extracellular matrix loss combined with a less robust hypertrophy response produces LV wall thinning and a decrease in LV EDV mass/volume ratio (16,17), as in our MR study patients (Online Tables 1 to 4). These myocardial responses are a poor match for antifibrotic and antihypertrophic effects of renin-angiotensin system blockade, which explains why this therapy or vasodilators do not attenuate LV remodeling in isolated MR (2,3). Although β1-AR blockade improves LV and cardiomyocyte function in the MR dog, interstitial collagen loss is unchanged, which may explain the failure to attenuate LV dilatation (9).

β1-AR blockade exhibits a trend toward preventing the need for operative intervention; however, the current study is not powered adequately to evaluate this outcome. Of interest, Figure 1 demonstrates baseline MRI-derived LV EF of less than 55% in 3 patients who received β1-AR blockade. The discrepancy between echo-derived LV end-systolic dimension and fractional shortening and MRI volume-based LV EF likely resides in the mid and apical spherical remodeling distal to standard echo-derived LV end-systolic dimension at the tips of the papillary muscles (19). Online Figure 1 and Online Tables 1 to 4 demonstrate the greater amount of LV apical spherical remodeling, which contributes to increased LV ESV. Nevertheless, LV EF slope was positive in the treated group, further supporting the beneficial effect of β1-AR blockade in isolated MR.

We do encourage caution that spurious findings may have arisen from the multiple statistical tests conducted for the 7 outcomes considered in this report. Because this was a pilot study, it was not clear at the inception what adjustments were appropriate to protect from the possibility of these spurious findings. However, even the most conservative approach, a Bonferroni adjustment with alpha of 0.0071 (0.05/7), subsequently was shown not to affect the interpretation of the findings, because all factors significant at 0.05 also were significant at this strict level. In addition, as noted in the statistical methods, multiple correlation structures may be used to analyze the data. The choice of an appropriate structure was based on a priori and objective criteria of goodness-of-fit indices for the model using that particular working correlation and were not based on treatment differences in the outcome measures. Thus, it is worth noting that using autoregressive structures considered or using actual times when MRI was undertaken resulted in no significant differences in any of the outcomes.

The current study uses cardiac remodeling as a surrogate outcome to assess the potential beneficial impact of β1-AR blockade in chronic isolated MR. Although we are convinced that the surrogate outcome of LV EF will be related strongly with important clinical outcomes, including prevention of heart failure and prolonging the need for surgical intervention, the current study does not definitively establish that clinical outcomes will improve, an association that can be assessed only in a Phase III randomized clinical. Nevertheless, this study using LV functional outcome, in

Table 2

Estimated Annual Rates of Progression (Increase if Positive and Decrease if Negative) of Each Outcome for Each Treatment Group

<table>
<thead>
<tr>
<th>Outcome Variable</th>
<th>Slope Estimates (SE)</th>
<th>Placebo</th>
<th>Toprol</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV EDV/BSA (ml/m²)</td>
<td>-2.53 (2.19)</td>
<td>0.25 (2.14)</td>
<td>0.4568</td>
<td></td>
</tr>
<tr>
<td>LV ED mass/LV EDV (g/m²)</td>
<td>0.01 (0.01)</td>
<td>-0.00 (0.01)</td>
<td>0.1987</td>
<td></td>
</tr>
<tr>
<td>LV ED radius/wall thickness</td>
<td>-0.09 (0.06)</td>
<td>-0.04 (0.06)</td>
<td>0.5550</td>
<td></td>
</tr>
<tr>
<td>LV EF (%)</td>
<td>-2.48 (0.75)</td>
<td>0.47 (0.75)</td>
<td>0.0060</td>
<td></td>
</tr>
<tr>
<td>LV ESV/BSA (ml/m²)</td>
<td>1.31 (0.81)</td>
<td>-0.11 (0.81)</td>
<td>0.2144</td>
<td></td>
</tr>
<tr>
<td>Peak systolic longitudinal strain rate (%/s)</td>
<td>-6.48 (3.70)</td>
<td>0.96 (3.73)</td>
<td>0.1587</td>
<td></td>
</tr>
<tr>
<td>Peak early filling rate (EDV/s)*</td>
<td>-0.18 (0.06)</td>
<td>0.09 (0.06)</td>
<td>0.0011</td>
<td></td>
</tr>
</tbody>
</table>

*Peak early filling rate (milliliters per second) normalized to EDV. p Values are for comparing the estimates for the groups. Abbreviations as in Table 1.
addition to other reports of a survival benefit in patients with isolated MR (10), provides empiric support for the use of β1-AR blockade in patients with chronic degenerative MR. These findings call for a large multicenter clinical trial to confirm these effects.

Acknowledgments
The authors thank Robert Foster, MD, Birmingham Heart Clinic; Bradley Cavender, MD, and Steven Bakir, MD, Cardiovascular Associates; and Michael Parks, MD, Southview Cardiovascular Associates, for patient recruitment in Birmingham, Alabama. This study is dedicated to the memory of Dr. Robert A. O’Rourke, whose input at the start and during the course of this study is greatly appreciated. His devotion to translational research, teaching, and patient care was and continues to be an inspiration to his many students, trainees, and faculty. Dr. Dell’Italia is forever grateful to him for providing his start in academic medicine and for his continued support and advice through the years.

Reprints requests and correspondence: Dr. Louis J Dell’Italia, Division of Cardiology, Department of Medicine and Cardiovascular Disease, University of Alabama at Birmingham, 901 19th Street South, 434 BMR2, Birmingham, Alabama 35294-2180. E-mail: loudell@uab.edu.

REFERENCES

Key Words: beta blockade ■ medical therapy ■ mitral regurgitation ■ mitral valve disease.

APPENDIX
For supplemental tables and figures, please see the online version of this article.